RN . .] {

DOCOMENT RESUHER A

ED 201 337 \ , : _ , IR .009 351
AUTHOR ‘ ques-Roth, Prederick And Others '
TITLE . "Knowledge Acquisition, Knowledge Programming, and
- Knowledge Refinenment. .
INSTITOTION .Rand Corp., Santa Monica, Calif.
SPONS AGENCY National Science Foundation, Washington, D.C.
FEPORT KO ISBN~0-8330-0195-7; Rand-R-2540-NSF
PUB.DATE May 80
GRANT : MCS77-03273
NOTE » 39p. o '
. .AVAILABLE FROH Rand Corporation, Main St., Santa Monica, CA 90406
v - ($3. 00). ' '
: EDRS PRICE VuF01 Plus Postage. PC Not Available from EDRS.
~— " "DESCRIPTORS C#Artificial Intelligence; *Computers; Inforauatioa

Theory; Man Machine Systems: *Programings; Research
Reports; Systeus Development

- ABSTRACT - . o . ;

: This report describes the principal findings and
recommendations of a 2- year Rand research project on machine=-aidead
knovledge acquisition an \discusses the transfer of expegtise from
humans to machkines, as‘well™as the functions of planning, iebugging, -

‘ knovledge -efinement, and: autonomous machine learning. The relative
~advantages of humans and machines in the building of intelligent
systems zre explained. Background and guidance is provided for
. policymekers concerned with the research and development of
nachine-based learning systems. The research method -adoptel i
5 - erphasized iterative refinement of knowledge in response t> actual
' experience; l.e., a machine's knowledge: was acquired 4initially from 2
human who nrovided enough concepts, constraints, and problem-solving
heuristics to define some minimal level of perfornance. Sixty-tw>
*references are listed. (Author/FH)

e - . - »

.

3 -y - .‘ -

*#******##*#**#*#**#*##******#***t**#* u:x***************m*********m**
L Reproductions supplied by E4RS ar ixe best that can be’made N S

ERIC.. % ~ from the originz. ‘“sscument.. B
; ﬂ*f!##&f#*###*t**#*ﬁ#' AR S AR X #*#**#****#**** :

o -
F . US.DEPART “MiF Ok wxALTH,

EDURATIC A WELFLAT
NATIOV Y iy o

01337

NV
=

- ATION
THIS DOCL: 4. * “3 BT . PEPRO-
DUCED EXA. - WIT D EROM
THE PERSDN (- aZeT HLLRIGIN-
_ATING IT P0INT C1EW IR0 NIONS

_STATED DO K7 ~ZCESSAF .~ SEPRE-
SENTOFEFICIA SATIONAL 1 " TUTE OF
ELMUCATION PLIITIGN OR B _iCY

KNOWLEDC® ACQUISITION,
KNOWLEDGE PROGRAMMING,
AND KNC WLEDG F REFINEVIENT

g

wF

PREPARED UNDER A GRANT FR) 7+E 4ATIORAL SCIENCE DU JDATION

ZRFOERICK HA TS { D H. PHIL. » XL-.=R,
DAVED 4 STOW

K .oeB-ISF
MAL 7580

‘PEMESTION TO REPRODUCE Ti4IS
MATITHIA . IN MICROFICHE ONLY
-“AS ZE=N GRANTED BY

u

i
T Cockrell
SANTA MOMER, CA 30406 ' i
T THESTDUCATIONAL RESOURCES .

IMNZIRAMATION CENTER (ERIC).”

™
L.

'PREFACE

Thic report describesth 1 acipal irQings anc recommendations of a two-year
Rand resea:ch project on r .aine-aide kmowledge acquisition, supported by a
grant fr- ‘2e Inteliigent Sy stems Program, Mathemetical and Comr:zzer Sciences
Divisior. National Science” oundazion. It &iscusses the trensfer of e=ertise from
humans tc machines, as w:_1 as the furctions of planning, debuggir— knowledge
refinement, and autonomas: machine learning; Throughont, the aur—ors attemp:
to explain the relative atv=zumges of nimame ane mechines 1 the building of
intelligent systems. This vz=- :oin mei*ates am anproach to i¥brid systems in
which humans provide initiz. »-=w=iede 2 1o macmnes and coope== wiith them in
the iterative évaluation and refine=mem ..1f the: kkmowikedge-bzsed s+a=m. The report
provides background and :uidanc: for . makers concerned witn tte research
and development of mack:ne-based lez.-ung svsteins, anc it should be of interest
to computer sc1entlsts cognitive osychniagis.. znd others interested 1 machine
intelligence.

During this prOJect ‘the resezch sl zrniored mas alternatve arnproachee
‘to machine-aided learning and cor: "-Z:l&w‘ .:xz:t‘np o8t proeisin 7 avanyar or future
work is to translate human experts— mre nitgial imtelligent: programs 223 then to
refine the implementations 1ter.=.nvm - 25 mddica‘ted by exiperience. This:azpproach
blends machine capabil:ties witt humr: expertise v the generatior an- iterative
improvement of inielligent systen. . '

The report explains why the zuther: bave :hamex = explore this problem,
describes how they are pursuing-tneirzoalk, and Zscwsses the prezves to date.
Because the stated task ic very d_‘ncuit, ste surface has onl™ been scrszuved; much
remains to be done.

Several computer programs ~ave b=m. develmed in the course z1this project
by various combinations of the zuthors »~<heir ¢-llaborators. Mossmw has imple-
mented the, knowledge—nrogrammng svovem as « -rt Of his dissertz=zion research

supervised by Hayes-Roth. Hayes-Rotk mmi Kl]ah aave implement=d three differ-
ent programs for representing a=d app: . - the —nowledspz of the Jwerrts domzin.

‘While these programs actually play the === wmoderately well, thei~ =erest for us
lies in theiralternative approaches to kmowledgre rep=senrtation aad cuatrol. Lenat
has implemented in his program RLL some ¢ tfe idess for restructuring knowi-
edge discussed in.Lenat, Hayes-Roth, and K :hr !97% & 1979b). All of these
programs should be considered fundamenzally =: txpez-menta: and ephemeral;
ithey serve primarily as “breadboards” for testing or:>ideas. In the future, they may
_ giverise to addxtlonal expenments or more permanent arid extengive apphed sys-
tems.

" David J. Mostow is a doctoral candidate ir == Trepartment of Computer
Science, Carnegie-Mellon University, and a consxitart t.. The Rand Corporation.

i ~

SUMMARY

e scientist who wants to uncerstand and construct learning systems must
first zefine “learmng and then develop a research method that eventually pro-
duces learning mechanisms. Int contrast to conventional views of learning that focus
on pmblems of feature selection, combination, anci weighting, the definition we
have used in this study emphasizes a continual groswth and refinement of knowl-
.edge. From this poirt of view, a system learns by iricreasing the scope, precision,
validity, and power of its current knowledge. That knowledge includes descriptions
and models of the environment, 15 well as planning and problem-solvmg techniques
for achieving goals. Learning requires the system to augment, generalize, special-
ize, validate, and exploit the knowledge it pcasesses at any point in time.

The research ‘method adepted here emphasizes iterative refinement of knowl-
edge in response to actual exoerience. In this approach, a machine’s knowledge is
acquired initially. from a human, who provides enough concepts, constraints, and
problem-solving heuristics to define some minimal level of performance. We use
semiautomatic methods to convert the initial knowledge into a working program.
Then. when the 1mt1al program executes, we observe the resulting behaviors to
diagnose problems and design knowledge refinements. Although this refinement
process currently requires significant human contributions, we have formulated
methods that may make it possible to.reduce or eliminate much of that involve-
ment.

This report explains the cyclic roles of undersffmdmg, plannmg, and evaluation
Zuring the development and extension of knowledge. A prerequisite for learning
‘s an initial base of knowledge. Most learning results from the constructive appli-
cation, evaluation, and refinement of that knowledge. By predicting probable conse-
auences of our actions and noticing unfulfilled expectations, we can isolate and.
often quickly remedy weaknesses in existing knowledge. In this framework a

- learning system must use existing knowledsa to plan reasonable courses of action, -
.. carry those plans out, and then diagnoss * Fe 5 esses that explain observed failures

: or unexpected successes. The processes o' jp:ur:1'ng, acting, and evaluation cooper-
ate to produce new knowledge by refnin» < i extending prior knowledge.

... The suggested approack: is illustratnd b b..g_@_lgwmg simple example: Let us.
suppose that an intelligent system has bven desigiied to.control a power generator.
Its knowledge base describes the system’s likely behaviors, sensor readings, and
control mechanisms. These behavioral specifications then relate assumed situation
conditions to optional control actions and their expected effects. For- example, the
knowledge base might describe_the relationships among several valves, pumps,
pipes, temnperature gauges, and control switches. Let us assume that rising temper-

A-atures produce some undesirable situation D. A plan to compensate for rising
temperatures indicated by sensor A might dictate tummg off valve B on pipe C.
This plan would be associated with a rationalization, i.e., a proof or informal argu-
ment, estabhshmg that when A indicates rising temperature, closing B on C will

. eounteract the'undesirable consequence D. The proof mlght also establish addition-
al expectations ‘about corroborativi sensor readings or side-effects produced by the
B closure. Let us hext sfppose that, subsequently,”D actuaily occurs. We can now

compare the assumptions and deductions in the rationalization with actual obser-
vations of the current situation. We may find that all the assumptions remain true,
but some deductions are falsified by data. In this case, we can identify the faulty
inference rules as those whose premises are true but whos= conclusions are false.
Alternatively, we may find that soms= of the expected or pre=upposed conditions do
not obtain. In this case, too, we car identify the source of 'z faulty expectation.
Once it has been identified, the faursy rule becomes the st:-;zct of refinement.

In refining a faulty inferential rule, a vaﬁety of heuristics may be used. Each
potential change to existing knowledge reflects a new hypothesis ahout the-behav-
ior of the modeled system or the effects ur'actions upon that svstem. These hypotmie-
ses constitute the intelligent system’s new knowledge. To illustrate any of these
learning heuristics requires an actual comparison between expectations and obser-
vaticns. But let us suppose that the plan for preventing D reasoned as follows:
Closing B prevents water from reaching E (B-E rule), which, in turn, prevents vapor
from saturating F (E-F rule); and only a saturated F could cause D to occur (F-D

~rule}-Now a variety of diagnoses and refinements might arise. To pursue one of .
these, suppose that F does not saturate but D occurs; we should reject the current
F-D rule. To refine this rule we would need to specify more accurately those situa-
tions in which the predicted F-D relationships occur. We might then use any of
several available techniques for constructing descriptions capable of distinguishing
the current situation from earlier ones in which the' F-D relationship behaved as
predicted. The new discriminating specification would yicld a new hypothetlcal rule:
such as, When condition X occurs, only saturating F causes D. .

' Altematlvely, we may find a source of improved knowledge in the proof that
underlies the plan. This proof might introduce some unproved and invalid assump-
tions. In the current example, the belief in the effectiveness of closing B for preclud-
ing D might rest on the assumption that saturating F causes it to short-circuit and,
implicitly, that nothing else could. In practice, many assumptions of this sort enter
into planning quite implicitly. But in this case, a short-circuited F unit in the
presence of nonsaturation reveals the faulty assumption directly. Many more illus-
trations and examples of the diagnosis and reﬁnemen' ¢ process are descrlbed in this
report.

- Some of the ideas described here have been implemented in working computer
programs that are described in detail elsewhere; however, in this study we have
concentrated primarily on improved problem formulations, concept developments,
and “hand-simulations.” We anticipate that long-term research will be required to
implement working computer programs that can perform all the functions this
research paradlgm suggests.

ERIC

Aruitoxt provided by Eic:

ACKNG® -T5cMENTS

We gratefu. « ick-.owszdge ©i i sanuve contributions cf our Rand, Stan-
ford, and Carne -M:ion czileag == - t:ig work. John Burgs colisborated with
us on learning h=rristzes. Stzmaey = -sanwwnein made frequent contrzoutions to our
efforts on knowisnze represenizsiio. v -<tms Lenat assisted ir the cevelopment of
knowledg= repres=—tations, seurt=we . ..d mrocedures for cognitive: economy. As
advisorsto Jack tow, bomr ¢ ter ez Jaime Carboneli cor-ributed to our
understanding o~ -=rationaiiz .ucx Tx ¢ zport, however, represer s only the au-
thors’ atéitudes =~ 1ot the of nic:- ¢ ~oti=rs with whom we have collaborated..

vii

ZONTENTS

PREFACE................. ... e e e iii

SUMMARY S P v

ACKNOWLEDGME‘ S e vii

Section ; o
I. BACKGROU :... .ACHINE-AIDED =NC “_ZDGE ACQUISITION

~ INPEEPEC"IVI........... . fviin, TR 1

II. ' ADVICETA: ..ND KNOWLEDGE P:R0ZRAMMING.......... 6

. Two Pare= i »r Developing Expert { s/stems.................. 6

"Convertizz_<no ledge into an Executabse Frogram............... 9

Example- ~"Or :donalization.......cccvviiiiiine, 11

Operatic - :iziu. :rategles Tactics, ar: f*ﬂcedures 16

o Integrat e e e 17.

I PLAN EV-_JATI" v ANDKNOWLED “EFINEMENT 19

Bugs Ree<zded i Program Execution e L. 19

Diagnos .- and } mmg a Reasomng E ... e 20
Summarv e veme e .24

IV. "CONCLUS™ NS AND RECOMMENDA ONS. ..o 21

* FINAIng. ot e e e e 27
, Recomr==r.dations........ PP 28 .

BIBLIOGRAPHY e IUTUT TP 29

1 ix-

1. BACKGROUND: MACHINE-AIDED KNOWLEDGE
~ ACQUISITION IN PERSPECTIVE

The processes of knowledge acquisition and learning have fascinated peop::
- throughout muct of hlstory In this century, the growth of behavioral and inform=-
tion sciences has stimulated various forms of basic and applied learning researc:..
Behaviora) nsychology, for example, has made impressive gains in developics
practical procedures for improved training of humans anl animals. This type -
work focuses primarily on the nature and the appropriate timing of contings=:
reinforcements. The essential finding has been that a reward received soon afc=r
some desirable behavior occurs increases the chance that the behavior will reczr.
- Cognitive psychology, on the other hand, emphasizes the ideas and concepts gov-
erning ordinary thought. For example, researchers i in this field attempt to explzin
how humans induce common category concepts such as “dog” or “criminal” frem
examples. Researchers in the relatively néw field of artificial intelligence (Al) *:ave
addressed both of these kinds of learning problems. However, their emphas - on
machine learning imposes demanding constraints on potential theories. Fc - Al
purposes, a theory of learning must lead to a computer program that exk: olts
.. improved performance over time. -
This report describes only one of many approaches to machine learning. 7 hus,
we shall first review briefly the related Al research that formsthe current scientific
context. The several approaches that have developed over time have emphazized,
~in order, adaptively adjusting feature weights; generalizing examples of categories,
_transformations, and more general procedures; using heuristics to synthesize new
© concepts; and directly transferring hruman knowledge to computers. 4
Early Al work studied. adaptive learning schemes that could adjust control
parameters to correlate the machine’s output with a desired standard. In this sense,
the early learning devices acted somewhat like adaptive control devices. The Per-
ceptron (Minsky & Papert, 19€9), for example, was a pattern-recognition device
that classified test patterns by computing weighted sums of feature-detector
outputs When the sum exceedad some threshold, the response indicated corre-
sponding class membership; if the sum fell below the threshold, the pattern was.
rejected frofn the class. When an incorrect decision occuried, a learning algorithm
‘prescribed how to adjust the feature weights. Because the machine adjisted its
weighting factors to-accommodate its training experiences, this kind of learning
" might be considered the first of many subsequent paradigms for “learning by
example.” (A different application of a similar technique addressed tactics in
the game of checkers (Sarnuel, 1963).) .
Over time; Al researchers moved increasingly toward a belief that mtelligent
behavior requires substantial world knowledge. Most intelligent tasks require spe-
- cific featuretﬂetectors complex descriptions of patterns and structures, and corre-
spondingly complicaied procedures for comparing one description with another.’
Without these, very few human capabilities could be simulated. Soon after the
development of behavior.l learning theories and devices like the Perceptron, scien-
tists began te point out the need for these more complex mechanisms. Work i
machine-vision programs, for example, established the need for speclahzed detec-
_tors for edges, corners, and intersections and sophisticated procedures for fcllowing

1

and interpreting their connecinr...::- scenes. These kinds of ir ;ernal structures lay

outside the scope of the earlic' ::‘ng frameworks. A number of Al researchers
then developed improved ine: .. i -or learning by example *hat could gencralize
rules from arbltranly complez: :::—-:'ural descriptions (Buchanan et al., 1968; Bu-

chanan & Mitchell, 1978; Hay:=Z==2. 1374; Hayes-Roth, 1976a; Hayes-Roth, 1976b;
Hayes-Roth, 1977; Hayes-Ro— .973k; Hayes-Roth & Burge, 1976; Hayes-Roth &

. McDermott, 1976; Hayes-Rot= & M.:Drermott, 1978; Mitchell, 1977; Soloway & Rise-

man, 1977; Vere, 1978a; Vere. 1978:; Winston, 1975). These f)"rocedures use initially
provided feature detectors z- wel: as “structural” or “relational” connections to

describe each example of a g=en ciass. Then by partial-matching the descriptions

of many exarples, commor: szbdescriptions emerge as candidate general rules
(Hayes-Roth, 1"'8a) This mezthodology has supported machine induction of trans-
formational grafmmar rules (layes-Roth & McDermott 1978), chemical reaction
rules (Buchanan et al,, 1969; Bucharan & Mltchell 1978), and snmple robot plans
(Vere, 1978a), among others.

The basic limitation of tzis more recent work der1ves from its “subtractive”
approach to learning. The le=rning programs devised under this approach produce
new rules by detecting whici: of the currently known features and relations appear
jointly in each example. By zssumption, each example reflects ériterial features as
well as some irrelevant fe=tures peculiar to the specific example. Learning by

“example, in this context, simply requires subtracting the irrelevant features i ineach -
case.- While this approach can be very useful for practical problems in pattern - -

recognition and data interpretation, it provides little 1n51ght into the discovery of
new features or new functions for performing a task. :
‘Two recent research projects have shed some light on such dlscovery problems

Exemplary-programming regearch at Rand (Waterman, 1978b; Faught et al., 1980),

has investigated the problem of inferring programs capable of recreating the in-

teractions between a human and a machine _engaged in a task (see also Biermann -
& Krishnaswamy, 1976). The creation of a program from a human/machine dia-
logue requires methods that are more constructive or “synthetic” than other learn-
ing-by-example tasks. The two chief problems concern interpretation of the exam-

ple'behaviors and the subs&juent regeneration of corresponding beha-.ior in new
contexts. Interpreting ar arbitrary human/machine interaction appears to require

*a variety of sources of knowledge, inciading sources for explaining (1) the meaning .
of special typed symbols, (2) the state of various systems employed during the -

session, (3) the semantics of computer system outputs, (4) the -goal of the person
performing the task, and (5) the problem-solving procedure that person apparently
appliéd. Each of these types of knowledge contributes to understanding both why
and how the person and the machine cooperated to solve the task. To construct a
generaiized programthat can replace the person in such tasks, we must convert
this passive understanding of the task’s purpose and solution methods into effective

procedures. These procedures, if truly general, must accomplish the same’effects -

although various situational characteristics will differ from the initially observed
data. This requires several types of knowledge in addition to that previously noted:
knowledge concerning system control and interactions; knowledge of plannmg and
problem-solving; and kngwledge of programming methods.

Another recent project that 111ummates the synthetlc nature of learmng at-

tempted to snmulate the dlscovery process in mathematlrs (Lenat 1976 Lenat,

s

s

- -

) ’ .
M . 3‘:
. .
. N N - =

A . :) : ~

1977a; Lenat, 1977b; Lenat & Harrls,..lé78) This project °mp‘oned two types’ of

knowledge to induce-rew concepts of elementary set: theory “The ﬁrst type of

_kﬁowlpdg\. consisted of-a variety of mathematical ‘concepts, such as “sets, lists,.

equalities, and functions. Over time, the program’s conceptual knowledge grew as
new concepts were created from exlstxng ones. The methods for discovering new
conmpts constituted the second type of knowledge. A few hundred rules called
“discovery heuristics” modified existing concepts to produce new ones. For exam-
ple, several heuristics formulated new concepts by “generalizing™ o?d ones. Al-
though,the program knew at the outset the concepts of a list (defined as “an ordered
collection of elements”) and length, it conjectured for itself a new concept that
generalized these notions to produce the concept of “length of a list of identical
elements.” In this way, it produced the concept of unary numbers, that is, a list of
n tick marks meaning the number n. Other rules formed new coricepts by specializ-
irg existing voncepts, by searching for examples of newly conjectured concepts, or
by forming new mathematical functions with arbitrary attributes (e.g., by restrict-
ing binary functions that applied only to cases where the first and second argu-
ments were equal). In this way, several insightful and interesting developments of
mathematical history were retraced .in a few hours of computes time.
The last type of machine learring we must mention might be called “transfer
of expertise” (Anderson, 1977; Balzer et al., 1977; Davis et al., 1977; Davis, 1977;

Davis, 1978; Hayes-Roth et al., 1978; Heidorn, 1976; _Heldom,—1974—Mostow—&——~

"~ 'Hayes-Roth; 1979mHayes-Roth 1979b; Samuel, 1963; Waterman, 1978a;

Waterman et al., 1979; Barr et al., 1979). Work in this area has aimed toward

constructing intelligent systeins accordirg to heuristic techniques prescribed by

human experts (Feigenbaum, 1977). The major obstacle to implementing intelligent
programs described in this way arises from the need to translate human knowledge
into computable formalisms. Several research proiects have demonstrated the via-
bility of using English-like, rule-based languages (Aniderson & Giliogly, 1976; Davis
& King, 1976; Shortliffe, 1976; Waterman & Hayes-Roth, 1978; Waterman et al.,,

1979) that enable‘z{umans to express their knowledge in rules of the form, If thére

is a drilling site vhose iron content exceeds 12 ppm and whose location is, within

12 miles of an oil field, then the probablhty of a moderate iron deposit is high. Whlle‘
this particularule is fanciful, a nymber of expert systems have heen creat>d for

. problems as diverse as infectious blood:disease therapy {(Shortliffe, 1976), artificial
* respirator maintenance (Fagan, 1978), internal medicine (Pople, 1975 & 1977), and

geological prospecting (Duda et al., 1978). The major lines of continuing effort in
this context aim (1) to develop improved high-level languages for such.rule-based

“programming (Waterman & Hayes-Roth 1978; Waterman et al.,, 1979) and (2) to

assist in the construction and maintenance of large sets of rules by developing
metaknowledge—knowledge about the likely and appropriate kinds of knowledge

- that should enter the data base (Davis, 1978; Davis, 1979; Stefik, 1979).

The principal concepts of previous learning résearch that we have discussed are
summarized in Table 1. The table also gives rough definitions of these terms as well
as brief descriptions of the mechanisms Al re5°archers have proposed for accom-
plishing various types of learning.

Our current research attempts to integrate and extend the best aspects of these

alternative approaches to machine learning and knowledge acquisition. Specifical-
CAREL | _ . \

10

. - N -) . - ."‘.'" 7 0 o)
< .- ; . . & 2
: - ~ : Table 1 : - S T
. - . ’ . . .] N - ~ ‘ - qc
. : PrEviOUs LEARNING CONCEPTS AND MECI}ANISMS Y RO)
‘ Concept Traditional Me&ning . Merhanism o - P
.' : * Learning - Changmg behavnor to improve. Rote memorization and cond "jon g \ =N
o * performance - “to contmgent reinforcement, T Yoo
Adaptive learning Changing behavior output - Adjust assoeiation weights ‘Eﬁ'n(ectmg . <,
procedures to more closely approximate stimulus featares to- oufputs by feé'd ‘ _ .
\ ¢ "~ desired standard. -+ ./ back (posltxye/negatlve) RN - PO B
IS 4~ - ¢ . .
Learning by example Inférring a general classifica- ‘Propose any Boolean combfhatlon of 2 . A
: tion rule from training sets. features consistent with the examples ’
N » R as the classifying rule.) - .
c ‘Ex,eniplary . Inferring a general procedure Infer the humans purpose- that .
programming . froin sample human/machine motivates: the dialogue, interpre{ the - e ‘"," 3
- © .. dialogue. L dependencles _between machine npd b . -‘“‘
. S : : human inpiits, then creatp a program ..,
< - o= E - .
R to mimic the human. - . : -
Concept discovery Inferring the eéxistence and . Detect that several distinct things:or~~ *) o .
- definition of a general class. events share some -features,” find a _;' ;Cv)}
: common description, and’ propase it ' \ L
. . ax a concept- definition;: or heurig-#.y" e
[T T o tically modlfy a prior concept defini- 2 s .. S
—_— T _ . L . tion, conjecture the concents valldlty, ‘ L
T . : . . and find examples of it. R
? Transfer of expertise Supplying human problem- Program correspondmg procedures di- ¢ VY \/g
' solving kr.owledge toa rectly; or -express. the knowledge . nﬂ,f;‘.‘ ¥
machme within a narrow formalism sutgble) A"’ TR
. " & o '™ LW
- - * . for machine interpretation; or.expre Vil ks
) the knowledge in a highlevel problem- \,La"fl\\yria i
¢ . . : R : E solving language (eg, a rule-based NN fs_as.- AR
S . ; - ' system). - . . e ST
-) Knowledge : Incremental addition of PFormulate a ieptese'ntatlon for a - _.!(D',’F / .
: acquisition - knowledge to an intelligent = type of knowledge the- system uses, . A
. . © system. _ use any mechanism to, \den_tlfy new P
‘ units of knowledge, and aduh,g_se to v ol
the knowledge base.’) 50 . {
. . . - A
. - oot . o Vs
‘ S — - . Ty
. . L) ':f: L
ly, we belleve the followmg coniributory factors to leamlng can and should be e, el
accommodated in a single system: . - s L CL T e
) 4 M - L v » o

.1.. Contingent reinforcement—when behavior produces undesuable corises . © ,
quences, the knowledge responsible should bé altered, and tendencies that SRPTR »
produce desirable outcomes should be strengthened. - T — A

2. / Learning by example—systems should benefit f'rom and generahze thelr
experiences.” = | . e

3. Knowledge as the source of power—a leamlng system should acqulre,) .

, ulate, and apply knowledge in the pursuit of increased capablhtles. e ' ~"<. >

. A 4. The understandlng of goals and the capablllty for plannmg to achleve il g

- . : © - them. . S
' .. 5, Acceptance of human adv1ce and knowledge about the taBk

M .- -, . l .
- e . e .
" .- - .
. 7 -
. E .

P

T

Aruitoxt provided by Eic:

s

Integrating these five capabilities into a system will require significant effort,
and only a small proportion of the needed programs have been 1mp1e'nented to-
date. On the other hand, we now understand many of the residual problems clearly.
Section II explains our formulation of and approach to the problein of understandg,
ing and assimilating knowledge about an arbitrary task. The concepts and mecha-
nisms that_characterize our approach are summarized in Table 2. Knowledge is
* acquired from humans, used to develop plans for ach1ev1ng goals, and finally con-
verted into executable programs. Section III discusses an iterative cycle of plan- - -
ning, acting, and evaluation that relates initial knowledge tv specific behaviors and
finally to new or mod#4 ed concepts After relating observed effects to specific prob
lematic components of
of domain knowledge, tne system diagnoses deficiencies and conjectures new
knowledge elements. Such knowledge refineshents engender a new cycle of plans,
acts, observed effects, ‘and inductions. ,I.paming, in this paradigm, is equivalent to . >
‘the iterative improvement of performance’ arising from discoveriés made whlle

~and, in turn, attributing these to erroneous elements®

.“) |

, . rnplementlng and re n1ng know.edge

Table 2_

Q

a

*

P

LI]ARNING CoNcEPTS AND MECHANISMS IN THE CURRENT APPROACH

. Concept

Meanmg

+ Mechanism

B . Humanfinachine
. coopératic:.

Advir - n g
— i

Goql~di%ted
_planning

- ~- A

Contingent
« reinforcement;

. Le'arning:'By

sexample

/ . Knowledge
‘ " - _refinement

Human and machine co-
operate to build intelligent _ .

" systems and improve them

-+

4

ovwer time,

Humans define domain
concepts, specify behavioral
constraints, and suggest
problera-solving methods.

Development of a plan for
achieving the expressed
goals that uses suggested *-

" raethods and satisfies ex-

pressed constraints.,

Human- provides initial advice on fask
knowledge and ‘problem-solving meth-
ods; human aids in converting the
advice into working programs and in
diagn‘osin'g and reﬁning- knowledge.

Develop a knowledge representatlon,

. express the knowledge in thijs form,

and_integrage it into a workmg pro-
gram semiautomatically.

Work bagkward from goals to 'suf-
ficient conditions . and actions by
deductively pursuing logical, heur-
istic, and instrumental transformatiozs.
These transformations .symbclically
manipulate-the domain concepts, con-

* straints,"and problem- solving methods

B

Stx:engthening of rewarded
behavioral tendencies P

* and-weakening of others, .

. L .
Use of actual situations
and results to trigger
learning.

Amendment or extension of

knowledge in response to
behavioral feedback.

v

to produce an effective procedure.
The planning pirocess establishes as-
sumptions and-“expectations about

plan-related situatioms and effects.

Reinforce knowledge contributing to
., favorable outcomes; didgnose snd re-

fine knowlédge causing failures.

Compare expected outcomes to actual

- outcomes and assumed conditions to
_ observed conditions in order to diag-

nose” fallacious planning knowledge
and to suggest knowledge refinetents.

Adjust the conditions assumed neces-
sary or‘suf,ﬁcient‘ for an action to pro-
duce an effect; generalize or further

specify the expectations™ associated

with an action. ‘

Aruitoxt provided by Eic:

12

¢

Il ADVICE-TAKING AND KNOWLEDGE PROGRAMMING

TWO PARADIGMS FOR DEVELOPING EXPERT SYSTEMS

Many of the recent successful applications"of Al have shown the power of :

implementing, more or less d1rectly, the heuristic rules of human experts. In tasks
requiring only one or two types of inferential procedure, such as.interpreting

‘ symptoms and test results in medical diagnosis (Shortllﬁ‘e, 1976), nearly all domain
knowledge can conform to a few generic forms or representatlons ‘Many appli-

cations of this type have adopted an if-then rule format for expressing the causal-
and 1nferentlal relationships (Feigenbaum et al., 1971; Waterman et al., 1979). To
derive; implications of known facts, the system app11es the rules to any data that

* satisfy the rule antecedents (the if component), and the correspondlng rule conse-

quents become derived facts. The system infers likely causes of\ observed symptoms
by reasoning deductively from observations to plausible causes. When the situation
data match rule consequents (the then components), the system hypothesizes that
the associated antecedent conditions may also be true. In this way, the system
reasons backward from effects to likely_causes.

These systems succeed, in part, because they use constrained rule f‘ormallsms

and perform only one or two spec1allzed kinds of inference. These constraints
* enable program designers to provide naturalistic languages in which nonprogram-

mers can conveniently express their knowledge. Such English-like languages'make
it easy for experts in various domains to create large and. powerful rule sets by
communicating directly with the computer, Because of their spemallzatlon ‘these

systems can also help in checklng the: conslstency and completeness of the human
- rule sets. '

The simplicity of these systems, of course, means that they lack the capabilities

-needed for solving most types of problems. Although many domains have problems-
*.similar to the medical -diagnosis problem, most intelligent systems need to perform

a wider varlety of actions than 1nterpret1ng symptoms in terms of their underlying
causes. If we consider such interpretation tasks as a spec1al kind of perceptual
process, we'can easlly see that intelligent behavior involves more than interpreta-

- tion. Usually, we think of perception, planning, adaptive control, and knowledge

acquisition as essential components of intelligence. We are presently. unable to
formulate all of these activities in terms of oné uniform type of representation that :
requires only a small number of related inference methods.

Thus although a human expert may know exactly what 1ntelhgent behavior-
requires in some new domain of interest, the current state of the art requ1res that -
a human programmer design and implement a unique system for most new tasks.)
Weeks or months after the initial transfer of knowledge from the expert to the’
programmer, a program emerges ready to run. Flgure 1 illustrates th1s typical -
process.

‘Of course, when the program finally runs, it typ1ca11y produces a.varievy of
unexpected results: At this point, both the expert and the programmer discover
that.the original knowledge apparently underspecified the program, because a
var1ety of situations produce unanticipated effects. Four types of problems explain

6 13 . .

L " '_, PR "i, :

EXPERT ,
. 7 " Linguistic Expression
: ' Knowledge |emafpl of Initial Knowledge

Specification

R

L ')) Representations'

» “Programmer . ==t Inference-Methods—
" i . , Programming Techniques

" Program o — Test Situations
Evaluations |@—— Test Behaviors'

-

:Undesirable
Behaviors

Desirable
Behaviors
K

zf‘r

F1g 1-—Expert system development and test1ng

'most of the behavioral deﬁmenmes (1) The expert neglected to express rules to
cover all of the special cases that arise; (2) the expert's rules did not produce correct -
- conclusions, because they made erroneous assumptlons (3) although the program-
. mer’s 1mplementatlon -decisions were consistent with amblgultles in the original
’ spemﬁcatlons they- generated undeslrable behaviors; or 4) the programmer over-
- looked or mcorrectly implemented some of-the expert s‘advme
o Observations of undesirable behaviors motivate a variety of d1scover1es and
- changes: New knowledge arises from eﬁ'orts to handle additional special cases; the
“expert modifies his injtial knowledge to corréct the errors in it; the expert refines
his initial rules to- resolve problematlc amblgultles the programmer ‘modifies his ~
infference methods or assomated program code" 80 that the program behaves as it -«
. should. Unfortunately, all of. these chariges requlre programmer 1nterventlon and '

* most of them take significant time and effort.” ,

' Iterative refinements generally cause programs to become progresslvely more
obtuse in their knowledge representatlons and -contro] structures, This, in turn,
makes it increasingly difficult for the expert to manage or comprehend his knowl-_

“edge-based system |Ordinarily, the costs of programming and refinement are oner-
ous; few programs ever satisfy their designers, because design goals contlnually
evolve-as expenence reveals additional system shortcomings. '

. This analysls suggests ari alternative paradigm for the programming and itera-
tive refinement of 1ntelllgent systems The pnnapal components of this paradlgm :
~ - are shown i Fig, 2. b : B
This paradl gm views the pr\ogrammlng problem pnmarlly as one of translatlng
o o expert adv1ce into an operatlonal program, and the iterative 1mprovement problem S

ADVICE
{ Domain Knowledge) : Knowledge

EXPERT fuacadp] ConcCopt Definitions, oy gggr:;?n‘-?gr —p(O

Bl

¢ Behavioral Constraints,
i Performance Heuristics

3

. . . © Test
—_— L Situations— - 3 Program |

Bchaviors Expectations

T

B ﬁiagnbsis
Modificd : and

Knowledge [«f= Knowledge | Mmoo

Refinemant

Fig. 2—Knowledge progi‘ammin:g and knowledge reﬁnement' “

as one of diagnosing program behavior to modify those elements of knowledge that
produce undesired behaviors. This proposed scheme emphasizes the problems of
- understanding high-level advice, converting it into effective behavior, and, inevita-
bly, changirg the knowledge and reiterating the cycle. These problemsare referred. .
+ to as knowledge acquisition, knowledge programming, and knowledge refinement, -
respectively.! For some time to come, all of these processes will require some
human participation. Thus; throughout this report we will describe semiautomatic
procedures for.performing thege functions.? s _
In the remainder of this section, we explain the primary problems and'proposed
methods for the first two processes, i.e., acquiring the expert’s knowledge by under-
standing advice and converting this advice into executable programs. These are the
" tasks of the knowledge programmer. In the process of k"nowledg‘e programming, the
knowledge programmer develops plans and procedures used by the resulting pro-
gram. These plans create expectations concerning the way the program should
behave. Contrasts between observed and expected behavior stimulate highly con-

' Knowledge acquisition, in our paradigm, refers to the transfer of expertise from & human expert
to a machine, The machine acguires the human's knowledge in the form of concepts and heuristics.
When the machine extends its initial knowledge by various learning methods, we refer to this as _
knowledge refinement. Different researchers might apply the term knowledge acquisition to varying
aspects of these 'processes. oo . o -

" * We do not know if machine learning techniques will ever achieve sufficient levals of success to
obviate the role of humans in such efforts. Thus, we see machines more as calculating aids to humans
'than as standalone investigators of complex domains. For the foresees ble future, at least, humans will
play a major role in guiding deductive processes that the machines execute more rapidly and systemati-
cally than would otherwise be possible. - . . 2 o ‘

3

strained searches for underlying deficiercies in the knowledge base. These deficien-
cies, in turn, suggest knowledge refinements. The refinement processes of diagnosis
and knowledge modification are described in Sec. III.

CONVERTING KNOWLEDGE INTO AN EXECUTABLE PROGRAM

We believe that a very large class of infelli'geht s;ystems can be specified quite .

"easily. A"behavioral description would ificlude constraints on permissible actions

as well as prescriptive methods for attacking problems'in the domain. Our ap-
proach rests on the central idea of expressing these behavioral constraints and
~heuristics in terms of natural domain concepts. A description of mathematical
discovery methods, for instance, should employ terms familiar to a mathematician.
When we ask a matheratician for advice abot his problem, such as what to do
or when and how to do it, wr. should allow him to talk in his own terms. Asking
" him to express his knowledge in terms familiar to computer programmers forces
him to translate . mathematics into programming. On the other hand, asking «
programmer to bridge the gap between the mathematician and the computer re-
quires him to translate between cultures—he must first comprehend much of the
field of mathematics and then map its concepts and methods into his owr: repertoire
~ of computer capabilities. " ~ . o

To obviate the need for cross-cultural translétio_n, .we are developing systems , |

that will accépt an expert’s advice expressed in familiar domain concepts; To under-
“stand the advice, we need to know the meaning of each conistituent concept, and
we must transform higher-level advice into actual procedures that the computer
-can perform. Our approach aims to assimilate individual concepts as terms with
* formally deﬁnéd-'prpperties. Then, we attempt to understand advice (e.g., con-
straints among ~lements, or heuristic rules for goal-directed actions) as specific
- compositions of the constituent terms. At present, much of this overall process is
understood, and some of it has actually been accomplished by our computer pro-
grams. We will sketch the primary features of'this approach in the following
- paragraphs. (Detailed technical descriptions are given in Hayes-Roth et al., 1978;
Mostow & Hayes-Roth, 1979a; Mostow & Hayes-Roth, 1979b.))

From the general ‘perspective,’knowledge programming converts aduice ex-

pressed in some naturalistic syntax into actions in the task environment. This _

requires several processes: parsing the advice into syntactic structures; interpret-
ing these structures by converting them to meaningfu! semantic representations;
operationalizing the meaning structures by converting them intoeffective, execu-
table expressions; integrating multiple pieces of advice into a coherent set of proce-
dures; and, finally; applying these procedures in actual situations to generate ac-
tions.® These operations use a knowledge base that stores individual domain con-
cepts and their interrelationships (see Fig. 3). Assimilating each new piece of advice

? While all five of these subtasks are difficult, we have focused our efforts on thé problem of operation-
alization. Parsing and interpretation are fairly well understood as a result of the attention they have
received in natural-language-understanding projects. Opérationalization is a new topic of study. In the
new paradigm, emphasizing rapid implementation of expert knowledge urid rapid reimplementation of
modified kn.wledge, operationalization plays a crucial role. Integration is-also a very important and
difficult problem. Unfortunately, we have not addressed this problem in a substantial way during the
course of this research project. A neat solution to the integration problem would yield a single, compre-
" hensive program that could be applied simply, as if it were a typical computer procedured

10

[}

ADVICE

(\;‘ -v

PARSE .

|
h

KNOWLEDGE BASE:

«-——‘
INTERPRET

l" .Concopts. L
-] : Conceptual Relations,
L. OPERATIONALIZE 4
L [~ ' 1 © Assumptions,
— l : Inf ‘
5 nferences
<

- | wrecrate —)|.

[t

. appLy [:
o acmons | ‘

- Fig. 3_—I_nformation flow'in knowledge programming ’

[}

' requlres the knowledge programmerm appreclate how the advice relates to other
elements of the knowledge base. Thus, the knowledge base both feeds the assimila- E

tion processes ax%represents the incremental additions they- produce .

Several’ diffefent tasks we have explored in this paradigm have exhibited .
remarkably similar propertles Each task employs a smallset of d0ma1n-spec1ﬁc. -
concepts, a few constraints or rules, and an open-ended set of presenptlve heuristic

methods. Such problem domams include music composition, legal reasoning, tacti-

~ cal planning, and game playmg We have found that a familiar card game, hearts,
~ provides.a good basis for illustrating the major points of this research (see also

Balzer, 1966) The problem represented by the game of hearts is dlscussed ‘below.

Ll

o

iy

AR

1w

7 . .
; .)

EXAMPLES OF OPERATIONALIZATION

What does it take to specify a program that will simply play hearts in accor-
aance with the rules?* The published rules of the game define mandatory behavior-
al cunstraints. A program that behaves in accordance with these rules will play a
legal, albeit poor, game. A few slmple rules w1ll illustrate the nature of thls advice-

" taking problem 1
Players rule The game is played by four players.®

Players sequence rule Dunng a ‘trick, players play
in clockwise order around the table

Trlck rule A trlck isa sequence in wh1ch each player

plays one card

Trzck leader rule; The first person to play in the first
.trick is the one who has the two of clubs. The first | .
player plays the two of clubs. In other tricks, the \ ‘
i winner of thc precedlng trick plays ﬁrst :
I
-Ench player, if possikle; must play a

B Follow suit rule
card in the su1t of the first card played in the trick.

l én

f Win trzck rule In each. tr1ck the player who plays the K
N h}ghest card 1n the su1t led wins the tr1cl§ : \

The | rocesses of parslng and 1nterpret1ng these rules would generate knowledge- o

base]elements of the followmg sorts

l
e Players rule. j :
l Playersa—{pl p2 p3, p4}

: Players sequence rule. .
1f pl has just played in a trlck and p2 has not played

‘ ; © | in the same trick then p2 plays next;
if p2 has Just played;in 4 trick and p3 has not played .

' inthé same trick then p3 plays next;’ § ; IR
- if p8 has Just played in‘a trick and p4- has not played " : N

* in the same trick then p4 plays next;
if p4 has just played in‘a*trick and pl has not played . o =

- ~ <n thelsame trick then pl plays next;

Trick rule.
_iftis a trick : .
then q1 plays c1 dunng t : :

f

4 The reader who is concemed with the t;oncept rather than the, techmcal detalls of this problem can
skim the technical matenal that follows w1thout seriously affecting the continuity of the discussion.
5 For slmphclt'y, we igniore vanatlons on thls rule (for example, one variation allows a three-player

. . game).
i . To avoid unnecessary fom\ahty and techmcahty, we have expressed proposmons and conceptual
statements in terms of simple English equivalents., Readers 1.nterested in our LISP- based representa-

tions may refer to the techmcal reports clted prewously

."
N

12

followed by q2 plays c2 during t
followed by q3 plays c¢3 during t -
followed by q4 plays c« during t

and {q1,92,q3,q4} = players

and cl, c2, c3, c4 are elements of cards.

Trick ledder rule. = ' >
if and.only if player p has card two of clubs
then player p plays first in the first trick
and player p: plays the-card two of clubs in the ﬁrst trlck

if and only if player p wins a trick t
then player p plays first in the trick t' followmg t

Follow suit rule :
if the first card c played in a trick t is of suit s
ang player p before playing in trick t has some cards in suit' s
" then player p plays some card d in suit's dunng trick t;

Win trick rule.
if and only if : B _ _ .
the card c is the first card played intrick t = o
‘and the suit of card.ciss U
-and the cards played in trick t are called C
- “and C' is the subset of C whose suit is s
and the highest valued element of C' is. card d
and card d was played by player p 8
. then player p wins trick t;

The concept definitions’ supportlng such mterpretatlons are of two sorts. The N
first are domain-dependent definitions, such ds card, game, hand, 'and play. For .
example play would be deﬁned agan actlon by a player that changes the location
of a.card from the hand of the player to the pot. Thepossible: locatlons of cards

“include a player’s hand, a ‘player’s pile, and the pot.. In our work; we use a form of
the lambda calculus (Church 1941; Allen; 1978) for. encodlng these deﬁmtlons The -
~.second type of deﬁmtlon is used for representlng domalnundependent concepts -
- such as set, subset some, exlsts, sequence, if, t}'en, and dand. Lo .
Let us suppose for, the- current: example that only ‘the precedlng rules were

[

specxﬁed along with-a ‘minimal adetlonal set prescrlblng how players receive thelr, o

. initial hands and how the winner of each trick takes the cards in'the pot Could we "o
'dll’eCtly ‘apply the knowledge to produce behavior? The ahswer is no, because the S
constraints recognize acceptable behavior without telling us how. to* gen‘er'ate it 7o

That is, the constraints partially. define what to do without explamlng how. ‘Discov-

 ering how to achieve such desired behavmr requires us'to operatlonultze the advice.
In effect, we need to convert the adv1ce concerning what 1nto executable-methods: -

. Eve n.in this 51mple case, the search for effective methods to achieve the desired
- goal requires planning and’ problem-solvmg, wh1ch 1nc1dentally produce add1tlonal__‘ o
' insights into the domain. o

The general methods we have employed for. operatlonahzatlon may be summa- "

»rxzed as goal-dlrected planmng We bégin thh a statement of de51red behav1or

o»

_I_Q

13

which, in thls zample, might be "player p plays a card c in the current trick t.”
The-problem i 1o convert this goal expression into a procedure that achieves the
goal and satisf--= the constraints. Because this statement does-not tell us how we
may choose a sutisfactory-card, we regard it as an ineffective expression. We then
attempt to transform this eXp‘;’essmn into a composite of individual subexpressions
‘'where each component represents an effective expression; that is, each corresponds
either to a known value or an executable procedure that can produce a. value.
Several different problems need to be solved, and we use a variety of different
methods.

In this simple example, we mlght attempt tc transform the expression by
adapting a general-purpose Al problemssolving method to this task. For example,
we might attempt to adapt the general method of generate-and-test (Newell, 1969;
Newell & Simeon, 1972). To exploit this method, we need only find some generator

~ that suggests each possible action and then apply some effective procedure for
: verlfymg that the suggested action satisfies the constraints. This approach would
lead us to an operat1ona11zatlon such as the f‘ollowmg

Plan 1: v ‘
- consider each card c in turn;
T © asswmé you were to play c; :
I _ - ifv*V44, can prove that c would satisfy the constraints, .
U . .men piay .

This plan has wo-interesting aspects that reflect some deep and recurring issues.

,Flrst formulating a planofaction without having the actual situation data in-hand

requires very general and abstract reasoning. When we do not know exactly which

" cards have been played and which cards are in a player’s hand, for example, we

‘have difficulty formulating any specific action. In-an actual situation;- however, we
might find a similar judgment straightforward. For example, we could easily prove
. that playing the three of clubs is legal when the two of clubs has just been played.

These two alternative tasks—forming general plans before situations unfold. vs.

planning on the spot—we distinguish as ordinary operationalization vs. dynamic

' operatlonalzzatlon The first pomt then is that in most circumstances, dynamic :
operationalization seems both easier and more effective. Its primary disadvantage-

_arises from the need to postpone planning until actions are required. This means

that, at each point, the system cannot act until it has thought through the issues.
The second point concerns the degree of effectiveness we demai:Z. 1.om an oper-

* ationalization. The general plan proposed above may or may not be offective. It

presupposes two capabilities: (1) generating each possible card in turu and (2).
proving that the cerd satisfies the constraints. While in simple cases like the hearts -
task we can assuredly achieve the first capability, we can rarely establish valid -
proofs of such abstract propositions as in the second. The dlfﬁculty arises from the -
complete generality of the assertion to be. proved i.e.,-"c would satisfy the con-
straints.”’ To ¢ertify Plan 1 as effective, we need a procedure that we know.can prove
such .ertions. Thus, we might simply assume the use of a general theorem:-
proving orocedure to perform this subtask. This procedure, in turn, may or may
not be assuredly effective. The overall degree of effectiveness of Plan 1 would then
depend on-the theorem prover’s own effectiveness and the eventual success or
failure of its theorem-proving eﬁ‘orts -\

7

Q "‘ : . | . _‘ ; : 3 ' 20

14

The point we wish to make in this context concarns the degree of effectiveness
we ascribe to an aperationalization. Two kinds of uncertainties ordinarily preclude
developing assuredly effective plans. First, most real-world tasks address inherent-
ly uncertain environments. In these tasks, the constraints and behavioral hsuristics
may not be strictly prevabl:. Worse yet, in tasks that require both rewar:-seeking
and risk-avoidance behaviors (e.g., playing hearts), knowledge usually crescribes
simultaneously opposing, Lence inconsistent, objectives. Second, plans themselves
introduce a dif7erent type of uncertainty. This uncertainty, considered above, arises
from the residual meﬁ‘ectlvenesq or mcompleteness of the operationalization. We
have found that both kinds of uncertainties require heuristic solutions. That is,
intelligent systems can reason informally to partially eontrol uncertainty but they
‘cannot eliminate it completely. Much of our research revolves around the nature
of the heuristics both human experts and knowledge programmers can employ to
control such uncertainty efficiently. .

Because Plan 1 represents quite a “weak” or unspecific operationalization, we
might reasonably seek a stronger, or more detailed solution. A more 1nterest1ng
plan for playing a card can be derived by adopting another general Al problem-
solving approach. In this case, we view the problem from the perspective of the

general heuristic search method. This method specifies that to reach a goal state .

. G from an initial situation S, we should- choose actions from some set A that
successively change attributes of S until they satisfy G. To apply this general
method to the problem at hand requires matching aspects of the given problem to
components of the general approach. What elements of the current problem corre-
.. spond to'G, S, and A? The initial statement corresponds to G: Reach a‘state where
- player p plays a card c that satisfies all of the constraints. Situation S corresponds
to a set of quite general assertions about what is known® Such as that player p has
cards C. The set,of possible operations A is not immediately apparent.
To transform an initial state S into a goal state G. we employ three different
_kinds of transformations: Jogicalheuristic, and instrumental. Logical transforma-
tions convert an initial expression into a logically equivalent one. One common kind
of lqglcalw_transform_at_l_qn is a symbolic type of case analysis.:To analyze arn ex-
pression, we reexpress it as a set of alternatives, each of which rests.on an addition-

al, distinctive assuruption characterizing that-particular case, For example we

might reexpress the assertion that.p plays card cas a dlsjunctlon of two cases: (1)

p plays first in the trick and plays card c; or {2) some other player p’ plays first in

the trick, and later in the trick p plays card c. This transformatlon preserves the

“truth value of the initial expression, but, more importantly, it suggestsbne promls-
ing way to divide and conquer thé initial problem.

. + Case analyses break a single general problem into separable subproblems and

‘at\:e same time further :characterize aspects of the task situation -that’ bear

dir

tly upon. constraint satisfaction. In.Case 2, where p-is-assumed to play-after..

the trick has begun; p must choose a card in the same suit as the first one played

In this example, the Case 2 assumption can key the knowledge programmer to’

a_pply the follow suit rule in subsequent operationalization. of this path -

Heuristic transformations make plausible, if not necessarily valid, substitu-

tions in expression¥. For example, in developmg a plan of play with attention to
likely -effects, we might ¢ nsform the initial expression “after- the trick is opened,

p plays card c” into the two following cases: (3) “after the tnck is opened p p]ays_.‘.‘

g
(RS

card c, and c is the trlck-wmmng ~ard,” or (4) “after the trick is opened, p plaxs a
card whose suit is different from the suit of the first card played.” While.these cases
are verifiably exclusive, they do not exhaust the pussible situations that might
arise. Hence, a transformation of this sort might be plausible bui not equivalence-
preserving. We have found many practical situations where such heuristic transfor-
mations can lead to clever, if somewhat incomplete, plans. in this illustration, for
example, Case 3 leads to application of the win trickrule, further specifying the suit
and value of card c. Case 4, on the other hand, suggests an operationalization that
confronts the jollow suit rule. The prerequisites for that rule in turn become addi-
tional conditions on this line of reasoning. A

The third type of transformation to expressions models the result of instrumen-
tal action in the task environment. In the initial problem of generating a legal play,
the only actions known to the system would be dealing, playing, leading, and
winning a trick. Each of these corresponds to a transforination that will affect the
description of any supposed game situation. In the analysis of Case 3 above, in
addition to inferring requisite properties of the winning card c, we can also deduce
that p moves cards from the pot to his pile. Ic this simple example, the only
instrumental action that sheds much light on operationalizing the initial expressivi
is the primitive action of playing a card, i.e., movirig a card from a player’s hand
to the pot. Later, however, the actions, of winning a trick and moving cards from
the pot to players’ piles will play sxgmﬁcant roles in operatlonahzmg behavioral
‘heuristics suggested by experts. '

The knowledge programmer represents a variety of general reasoning methods
as transformations and applies these to convert high-level objectives into corre-
sponding effective procedures. The reasomng methods eproxted include case analy-
sis, partial-matching between an expression and the description of a general meth-
~ od to guide attempts at adapting the general method to the specific problem, sim-
. plification of complex expressions, approximation of uncertain or combmatorlal
_ alternatxves, and reformulation of an expression in terms of other known concepts.
Each specific operatlonahzatxon task requires some or all of these methods. For
"example,if the knowledge programmer adapted the heuristic search-method to the
- task of playing a’legal card, one resulting operatxonal expression fox plays card
"¢ and satlsﬁes the constralms” would correspond to the following: . " :

Plan 2) ’ L . \,\\
if p plays ﬁrst in the tnck
-and this is the first trick N
‘and p has the two of-clubs- = -
, N 4 then p plays the two of clubs, -

,else if p plays first in the trick- .
.and p has a card ¢ whose suxt iss - _
then p plays c,. ‘ _ . '

' else lf card ¢’ wds the first card played in the trick
" fad the auit of ¢"is 8 '
and p has'd card ¢ whose suitis s -
then p plays c,

16.

else if 'p has & card ¢
then p plays c.

Of course, because we have thus far consldered only the mandatory constralnts on
behavior, no'expertise has been included in this initial set of advice. In addition to
necessary conditions on behavior, the kinds of heuristics we want to acquire
directly from experts tell the program how it shor.ld behave. This goes beyond the
notion of behavioral-acceptability to the concept of desirability.-As anyone familiar
with law, music, hearts, and most other difficult tasks realizes; the bulk of human
knowledge in these domains directly concerns such prescrlptlve heur1st1cs

OPERATIONALIZING S’I’RATEGI ; TAC'I‘ICS AND PROCEDURES

Ina game like hearts where the'real objectlve is to m1n1m1ze winning tricks
that contzin point cards, expert adv1ce concerns strategies, tactics, and procedures
_that can help reach this ok jective. The rules of the game reward some kinds of risk
aversion -and some kinds of r1sk-seek1ng behaviors. For example, a player can
.improve his or- her (relatlve) score either by taking fewer points than tke opponents ‘
* or by taking all the points in a round. Thus, a ‘very simple type of heuristic advice
might be to “avoid taklng points.” We will conmder t’hls example brleﬂy to convey
the nature of the knowledge-programmlng problem it exemplifies. (A detailed tech-*
n1cal dlscusslon of th1s partlcular example appears in Mostow & Haxes-Roth: .
1979b) : : - \.. : x
_ Before proceedlng w1th the example, however, we need to postulate a few more
bits of knowledge. We will assume the knowledge programiner has assimilated the -
following facts: Any card that is in the suit of hearts hasa point valug of 1, and the
queen of spades has a. point. value of 13. We assume also that the concept “take” -
hasbeen defined to mean that a plaver winning a trick t takes all cards played'in -
that trick, i.e., ke moves them from the pot- (cards played in the tmck) to his pile. -
The concept_ “avoid an event x"is defined to mean “prevent event x”or "achleve

not [x]" Usmg such. DaSlC definitions; our program has transf'ormed the: initial

ineffective advice "avold tak1ng points” into an effective. procedure It generates a
plan that recreates- the typ1cal high- level steps most people apparently f‘ollow, o
although it works through many more and lower-level steps than people conscious-
‘ly make. -~ . o ;
Given the rules of the game and the adv1ce to "avmd tak1ng pomts " people
- reason roughly as follows: (1) Taking points means taklng cards with pqint ‘values; -
" (2) the only way to take cardsis towina tr1ck (3) “avoid taklng poxnts” thus means -
not winning a trick; (4).thisin turn means. playlng a card that i i8 not the h1ghest one,_ F
. and (5) this suggests playing the lowest card in your hand.”. 4 : :
For the sake of brevity, we summarize. the. actual mach1ne-a1ded aeﬁvau;au at
the same high level as the introspective human analysis. Flrst the program logical-
ly transforms “avoid taking points” by substltutlng for the term "av01d” its literal

- definition. This produces an expression like “‘establish not [player P takes points].”

Although the objects of "take” actions are cards and cards can have pomts it is”
, e
! After a little thought, peoble often notice ways to xmprove thls plan, but we shall reconsider those
kinds of mslghts later when we dlscuss the role of plan evaluation as a source of knowledge reﬁnement

£

17

impossible to “take” p01nts d1rectly The program reasons heuristically that “tak-
ing points” seems equivalent to “takmg cards that have points.” From this, the
program notices that:a sufficient condition for taking points is winning a trick in
which some of the cards have points. To preclude this from happening, it reasonr’s
that negating any of the necessary conditions should do. It then produces a new
expression that corresponds to “do not win a trick.” It uses the constraints on trick
winning to infer that the player wins only if he plays the highest card in the same
suit as tie card first played. Finally, it reasons instrumentally that this condition
would rot occur if he-played 4 card .of lower value. This type of plan leads directly
to a corresponding procedure for applying the adv1ce o ———
In a similar way, the program has been used with human assistance to produce '
plans for other kinds of advice in this game, For example, one useful heuristic for
new players is to “flush the queen.of spades,” i.e., force another player to-play it.
The kind of reasoning the program uses to develop its plan is.as follows: By sub-
st1tut1ng the definition of “flush,” it infers that it needs to establish the condition
“some player p must play the queen of spades.” It uses its concept of “must” and
the follow suit rule to infer that this objective requires that p have only one legal
~ card to play—iiie queen of spades. This in turn entails either (1) p has only the
queen of spades or (2) player q leads a spade, and p’s only spade is the queen. It
focuses on the second case and then develops a plan for how player g could force '
‘ such a situation.. In brief, it'develops a plan for q to win a trick to take the lead.
S Then as long as q retains the lead, q continues to lead spades. As players familiar -
with the game w1ll realize, thisis an eﬁ‘ectlve method for flushing the queen 8

- .
> . .)

- .

INTEGRATION

We have done little thus far to address the questlon of 1ntegrat1ng a varlety of ‘
separate pieces of advice. This type of problem lends itself to two approaches. The
first aimgat an overall consistent integration, while the second presumes no such
comprehensive 1ntegrat10n is feasible. As in the-preceding examples operationaliz-

——————- —ing-a ‘single-piece-of- advice-often requires simulta eously satisfying numerous
a constraints. Such an approach to comprehensive integration fits the overall frame-.
work we have illustrated throughout this section. In the second type of approach,
we presumably do not know the ways in whlch several pieces of advice interact or,
worse yet, the ways in which independent pieces may contradict one another. This
type of sltuatlon arises when we advise, for example, both “avoid taking points™ - -
.and “take all the pomts” or “take at least one point if no one else has.” ¢

Our approach to integrating multiple pieces of advice takes two basic forms.
First, we try to. formulate indépendent recommendations that themselves may
become the objects of metaheuristics. That is, we wish to accept advice about when,
how, and why to combine or favor one heuristic over another. Second, we want-to
infer these dependencies by understanding why ome heuristics produce undesir-

“able results in actual situations. In such cases, we wish to eliminate the anibiguity
by refining the initial heuristic to restrict its appllcatlon to approprlate situations.
ThlS kind of reﬁnement is dlscussed in Sec. III ' ‘

" ® Readers may also develop variations of this plan that seem supenor Such variations are dlscussed
in more detal] in Sec. I1I.

R}

‘/./) . ' 18 .

In sum we have presented ‘our paradlgm for- knowledge -programming and
iterative reprogrammmg of intelligent systems. This section has focused on knowl-
edge-programming processes, which are pertinent to both initial programmmg and
recurrent reprogramming. The next section motivates and explalns the reprogram-
ming problem in more detail. We have brleﬁy explained the kinds of advice we
expect our systems to assimilate and a variety of methods for converting the advice .
into operational programs. In this process, we see that the knowledge programmer
formulates plans that develop its initially vague concepts into effective procedures
for accompllshmg goals, These plans also play a major role in identifying weak
nesses in knowledge that stimulate learning. '

PN

L Q‘ . .
- S
3 .

©

g m\ PLAN EVALUATION AND KNOWLEDGE
BEFINEMENT VAR

/.

/ o

)

BUGS REVEALED IN PROGRAM EXECUTION/

To convert constraints and hedristics into actlo,n, the knowledge programmer

develops a plan that integratés task-environment actions ‘along with logical or -

heuristic inferences. In planning, the knowledg pr‘ogrammer reasons about the ;
effects of the yarious trazisformations it empl ys 'Some of its transformations-
preserve lugical equivalence, while others 1ntroduce approximate or plauslble rea-
soning. These latter kjnds of transformations ay 1ntroduce undesgirablé effects or-
“bugs.” The secona phase of 1ntelllgent syste Qevelopment is concerned w1th the

identificaiion, dzagno”sle and elimination o snch bugs. - ,
- We’ have developed a llst of‘ bugs that:ayise in knowledge programming. Some.

of these arise from omlssuons, errors, or a blgulty in the initial knowledge, while

[y

others are introduced by the knowledge-programnung process. Table 3 summarizes - .

these bugs: (Other AI researchers have congidered: bugs in problem-solving proce- .

dures, but these have little in- ccmmon

" for example, Davis, . 1978;
' Sussmann & Stallman, 1975; Brown & Bﬁrton, 1975.) e

Bucs ARISING Fno/:{a

Dav1s, 1979;

/s
/ Table 3

-

!

KNOWLEDGE PROGRAMMING

ith those under consideration here; see,
;ller & Goldstein, 1976; Sussman, 1975;

~

Tyvpe of Preblem

- — =
Soux’r{:e of rrobiem

Manlfeetutif n

1. Excess generality
2 _E)ﬁcess speo‘ifici.pp .
é. ('Zonceph poyerty

4 T_In_zalid knowledge
.. . .Ar'nbig'ixous }':nowle’dge
" 6 Invahd reanoning)

A Inadeouate integration
. 8, Limited horizon

. 9. Egocentricity

4

- Spec,ijﬁ cases overlooked"

‘ g "-‘-Generality undetécted.

5,

N Useful relatlonshlp not
detected:and exploited.

Mlsstatement of factsor -

e approxnmatlons

mphclt ‘dependencies not

' adequately artlculated

/Programmer mcorrectly

transforms knowledge S

multiple pieces of advice

/ Dependenges among
¢
(’ incompletely integrated,

i Consequences of recent
A :
f ‘past or probable future
events not exploited..

. ‘ “
- ; * Little attertlon paidto -
T
¥

probable meaning of -
others’ actions.

g

" Good rule occasnonally pro--
- duces bad effects.

i Rules fail “to cov’er enough

- \pases..

lented power and capablhty
of system, s

‘Expert’s expectations violated.

Ia) At -

Conflicts arise’in’ some situa- -

‘ ...tiohs about what is best to do.

'Knowledge programmer’s” ex-
pectatlons vnolated -
Rejec;ed -action alternatlves
. actually. satisfy more criteria:

than selected action does.

Judgmental]ogic seems static, .

not sensitive to changmg or

: foreseeable situations.

No apparent ada{)tatlon of
one’s. behavior, to “exploit
knowledge of others plqns

-

|

[
i
i

|

& .

20

The nine problems listed in Table 3 span a large set of potentlal weaknesses in
intelligent programs. For the sake of, brevity, we will consider only one of these
bugs in detail as an illustration of knowledge-refinement techniques. We have
chosen invalid reasoning; because it illustrates many of the ideas that recur in
knowledge refinement. After we have explained our approach to debugging reason-
ing problems, we will briefly charactenze the approaches taken for the other klnds
of problems-as well.

DIAGNOSING AND FIXING A REASONING ERROR

We address here only a limited class of reasoning errors, namely those which
manifest themselves as discrepancies between the observed outcomes of e)iecuting
a plan and the expected outcomes. Here we are focusing on the expectatlons that
the knowledge programmer generatés as by-products of its operationalizations and
integrations. The knowledge programmer acts as if it believes the transformations
used to convert.ineffective statements to specific procedures will prodi:ce results
satisfying the original obJectlves This belief applies, in turn, to each succegsive
transformation applied during the plannmg process. However, the transformatlons
may in fact yield procedures that do not always satisfy these expectations.

The approach we take to knowledge refinement in this type of problem begins
with an attempt to analyze an unexpected event. Thus expectations motivate and
trigger the knowledge-reﬁnement pprocess, as shown in Table 4. By analyzing the
violated expectation, we 1dent1fy both what went ‘wrong and why. Then, we propose
changes to the underlying knowledge to remedy the problem. The success of this .
. method often depends on isolating missing, extraneous, or imprecise predicates
. " used to restrictthe time at which-some action occurs. (This approach parallels that

‘Table 4

. KNOWLEDGE-REFINEMENT APPROACH
. Step. .) 3 . "ﬁ Source of Mechanism
1. Establish expectations C During knowledge programmmg, planning establishes plausnble

- antecedents and consequences of actions; these beliefs represent .
R ’ expectations.
A7) N . . N v
2. Trigger analysis - When an actual event.violates an expectation, the reasoning be-
: - hind the expect‘ation is reanalyzed in light of observable data.

' 3. Locaté faulty rules'* A set of dlagnostlc rules debug tHe planning logic by contrasting
R _ the a priori beliefs' with actual data. If a heuristic rule used by
- the -plan assumes a false, premlse or, entalls a false concluslon

‘it is faulty

4. Modify faulty.rules A set of learning rules: suggest plausible fixes to the erroneous
- ' " heuristic rule. These might alter its preconditions, assumptions,
‘ ~ or expectatlons to keep it from'producing the same faulty re-

" : sult in a subsequent sntuatlon

. B. Reiniplement and test '_ Incorporate a modified heunstlc rule into a new gystem by re-
: invoking tiie lmowledge programmer. Verxfy that the .rule

eliminates the prevxous problem and test it in new sltuatlons
¢

2'?

21

discussed:in Lakatos, 1976.) This vill become clearer in the context of a concrete

o illustration.

.Asone example of the act-evaluate-r eﬁne process, cons1der what happens when
the machine attempts to execute the previously developed plan to flush the queen
of spades. The plan was, roughly, take the lead, then lead spades until a player is
forcéd to play the queen. Suppose that this plan worked well in several games, but
during one game a sequence like the following unexpectedly occurred: The machine
player wins a tr1ck It then leads the jack of spades, and the other players follow
suit. The queen is still. held by one of the players. On the next trick, the machine
thooses another spade to lead. Thls time, it has only two spades left, the four and -
the king, and it chooses arbitrarily to play the king. The next player plays the five,
the one after him plays the queen, and the last plays the ten. The machine has just
won a trick according to its plan, and it has even flushed the queen. Unfortunately,
it has also taken 13 points, presurnably a very undesirable outcome. ,

What might a person in the machine’s situationdo at this point? With apparent-)
ly little effort, a person would recognize that the plan was buggy, because it
achieved an undesirable result that was unexpected. Implicit in the plan was the
notion that the player with the queen would be coeyced into playing it and, presum-
ably, winning the spade trick with it. In response to this insight, 2 human player
would amend the plan appropridtely. The fix in this case wouldmrequire that when
~ trying to flush the queen, a player must lead only spades below the queen.

- Our learning methods capture the general logic behind this type of analysis.
There are many chains of reasoning that might lead to the same. proposed refine-
ment as our hypothetical human produced. We will explain one type of argument
that appears programmable. o e -

‘Let us suppose that the rnachine (unlike a human) has no precise expectatlon
regarding the queen-flushing plan. However, since it followed supposedly expert
advice, it has a general'expectation that bad consequences should not result. When,
as in'this case, undesirable results occur, the program’ tries to understand why it
suffered such an outcome and how it could have prevented it. .

The machine analyzes the last trick to infer cause-effect relations, based on i{: '
current knowledge. To take 13 points in the trick, it had to win the trick during
which the queen was played. So it conJectures for itself some refined advice: Flush
the queen of spades but do not win a t-ick in which the queen is played. Because

" thisrefined advice surpasses the original advice in quality, the machine hasalready

lmproved its knowledge On the other hand, this hlgh level advice requires oper=~"-

ationalization if it is to be useful However, our current knowledge programmer
does correctly operationalize this advie- by producing a plan corresponding to the
following: Take the lead, then continue leading spades below the queen. Thus, this
type of bug is eliminated by f‘ormulatlng a desired refinement directly in terms of

a new high-level prescriptive heuristic. The refined heuristic, in turn, is implement-

ed by the same knowledge-programming methods previously uséd for accepting

advice from humans. (In some cases, as in fhls example, the refined heuristic can
also be implemented simply by modlfylng the previous plan, as opposed to startlng
over from scratch.) _

"'To continue our illustration, let us suppose that the machine begins to apply 1ts
refined plan. Because- it knows that the plan has been refined to prevent it from
taking the queen of spades 1tse1f it notes th1s spec1ﬁc expectauu,n in the knowledge

22 . T

.

base as a predicted consequence of the plan. In a new game, however, suppose it
has the ten, jack, and king of spades. It wins & trick, then leads the ten. All players
follow suit with lower cards, so the machine leads again with the jack. Again it wins
the trick. At this point, its revised plan proscribes leading spades, so it plays a
diamond. Another player wins the trick, and continues to lead spades. The machine
is forced to play the king, and the player after it follows suit with the queen of

‘spades. : : .

-~ Again, contrary to its specific expectation, it wins the trick and takes 13 points.
Now it attempts to discover why its expectation was violated. It constructs a cause- -
effect model of the events leading to the disaster. In this mode), it notes that at the -
time it played the king, it had no other choices. So apparently, by that time, only
by keeping the other player from leading spades could it have prevented the
disaster. Alternatively, it reviews events prior to that trick to see what, if anything,
it.did that contributed to creating a situation where no options existed. It notices
that playing the ten and jack of spades earlier produced the state where it had only
the king of spades. It notes that these actions were taken with the express intention’
of preventing it from taking the queen, but apparently they contributed directly to
just that outcome.

It now proposes to itself another refinement. It should prevent a reoccurrence
of this type of situation in the future. Its proposed advice: Do not lead low spades
if you can be forced to play a spade higher than the queen.! This, in turn, leads to
an operationalization that requires an estimation of the probable distributions of
spades among players. While we have developed some methods for handling such
probability functions, we have not yet implemented those needed for this particular
problem. However, as persons knowledgeable in the game will noti.e, the proposed
concept of a card that is “safe” vig-d-vis the opposing distributions is quite sophis-
ticated. In fact, generalizations of this “safe spade” concept, such as “safe in suit
x” or “safe with respect to all suit;.s,” play major roles in expert strategies. =
. Asanother example of knowledge refinement, consider again the-plan devel-

~ oped in Sec. II to avoid taking points. That plan proposed playing the lowest-

~ possible card. Using this plan, the machine expects it will avoid taking points, but ;
there are numerous ways that the plan leads to violated expectations, each of which
reflects characteristics similar to those in the queen-flushing examples. For exam-
ple’f it may play its lowest card (a five, say) and still win a trick with points. This
causes it to weaken its expectations (i.e., to associate some uncertainty with this
predicted outcome). Pursuant to.such a play, it may take another trick with its
current lowest card (a ten, say), aéa'n with points. However, if it had played the
ten before the five, it might have avoided winning the second-trick, because in the
second trick the five might have bsen Tower than another player’s card. Each of
these problems gives rise to new attempts to refine both the expectations and the
plan, in a manner similar to that previously described. K '

! This example has pot actually been performed by a machine implementation. Before it could be

implemented, several difficult issues would arise. Foremost among these, the diagnostic system would

" need to conjecture several alternative problems and solutions. Each of these proposed solutions would

require, in turn, experimental testing through additional play. For example, the program might have

. hypothesized the remedy, Do not begin to flush the queen of spades if you cannot retain the lead. This

heuristéc sbflaems beneficial, but we cannot be certain. Empirical validation of alternative heuristics seems
unavoidable. ' : ‘

29

23

Our general knowledge-refinement strategy can be characterized simply, as
'shown in Fig. 4. .
v The contrast between expectatxons and actual outcomes focuses the learning

system directly on specific problems. The system then attempts to find the flaws in
its original causal model in light of the new data at hand. This in turn suggests
additional conditions or new goals for knowledge programming..

. The overall approach we have taken to this problem employs three basic ele-
ments: (1) proofs, (2) dlagnostlc rules, and (8) learning rules. While these steps have
not actually been 1mplemented ona compuber we have hand-simulated all of them.-
The knowledge programmer associates with each plan and its expectations a proof
(or an informal rationale). The proof of a plan links assumed conditions to expecta- -
tions by following paths representing the- equivalence of logical transformations,
the plausible sufficiency of heuristic transformatlons, or the antecedent-consequent

" relations of instrumental acts. At each point,'a transformation links premises to

expectations, and these expectations may become part of the premises for a later
inference. In short, a proof maps a general model of cause-effect relations into a
specific derivation of the expected consequences of the planned actions.

Causal Model

- CONTRAST
Diagnostic q.mg Outcomes
Heuristics

) PR A—
: Idantified
; Brablems

tras L xancana

{
" REFINF
Learning
Heuristics -

1) }

b " Refined Causal Model
- and -
Modified Advice

- ' - " |" Action Plan, Lo -
: ADVICE —bITRANSFORMATIONS maeefp] Expectations, pemssedyl Behavior f

o

" Fig. 4—KnoWledge-reﬁ_né'ment stratdgy -

30

24

Diagnostic rules examine the proof in light of the evidence and identify hypo-
thetical deficiencies in the knowledge base. A typical diagnostic rule is as follows:

Invalid Premise Diagnostic Rule. If an expectation is violated, find a premise in
the proof of the expectation that is falsified by the data. If the false premise
follows from some inference rule whose own antecedent premises (necessary
conditions) are true, declare that rule faulty.

Learning rules, on thé other hand, specify ways to modify heuristics to correct
deficiencies. We have generated a large set of such rules to date. Two examples of
learnlng rules are given below:

Require I mplzculy Assumed Premise Explicitly. Ifanimplicit assumption of a rule
is falsified during proof analysis, add the premise to the required conditions ‘
of the rule and delete any other premises that it implies.

Guarantee Assumed Conditions. If an.assumed premise is falsified durlng proof .
analysis, identify sufficient cond.tions for its validity and make these required
conditions for the assoc1ated plan component.

. Flgure 5 demonstrates how these diagnostic and learning rules are used {o refine

the original “flush the queen of spades” plan as discussed above. Figure 5 also
exemplifies the knowledge-refinement approach outlined in Fig. 4. =

- We have thus found many ways to evaluate a plan against observable outcomes

to identify weaknesses conjecture refinements, and evaluate these refinements -

experimentally. Very little of this work has been implemented, because of the vast

number of possible learning strategies (see Table 5) and the wide variety of specific

possible applications. Any efforts to implement these concepts in a realistically

complex task will encounter considerable combinatorial difficulties. Each error may

suggest several hypothetical bugs and fixes. Each of these will require independent

empirical (or formal) validation, usually accomphshed best by experimental testing.

- The need for testing hypothetical concepts and rules will lead to alternative knowl-

edge bases and associated operational programs. Multiple systems of this sort are,

of course, difficult to manage even in'limited coftware-development environmelits.
-~ s '

SUMMARY

'Once a plan is executed, much can be learned from a retrospective analysis.
When advice is provided initially, two important things are missing that later
support evaluation and discovery. The first new source of 1nformapon is the actual -

situation description. The details of the actual situation in which the plan executes -

reveal and implicitly define important special cases that the general operationaliza-
tion overlooks. Second, having acted; we can see the true effects of our behavior
on the environment. This provides sources of confirmation or disconfirmation of
parts of our plans, which then stimulate focused efforts at diagnosis and knowledge
refinemént. These provide numerous opportunities for concept formulation, and
each, in turn, initiates a new cycle of knowledge acquisition, knowledge program- '

.ming, and knowledge reﬁnement

a °

a

31

PLAN .
Flush queen of spades : . .
If player P takes the lead

and P doesn't have the queen of spades i T
then P continues leading spades :

Expectation:
P doesn’t take the queen of spades
- Proof of expectation: .
1. Player P takes the lead Premise (condition of plan)
2. P doesn’t have the queen of spades. Premise (condition of plan)
3. P continues leading spades. . Premise (action of plan)
- 4. If player P takes the lead and P) .

doesn’t have the queen of spades
"-and P continues leading spades
then opponent will play queen

of spades. - Heuristic rule
5. Oppenent. will play queen of spades. .Derived premise from 1, 2, 3, 4
6. If an opponent plays queen of sp.Jes ‘
- then the opponent wins the trick
' and opponent takes the queen of _
: spades. ' ' Heuristic rule
7. Opponent takes the queen of spades - Derived premise from 5, 6

8. If opponent takes the queen of spades
" then player P doesn’t take queen ,
of spades. Heuristic rule
9, Player P doesn’t take queen of spades Derived premise from 7, 8

Behavior in actual play: P leads klng of spades;
' Qopsnent plays queen of spades.

Outcome: P wi_nsithe trick; P takes the queen of spades.
Expectation of “Flush queen of spades™ plan is violated.

. Apply dlagnoetlc rules to identify problems:
Usmg “Invalid Premise” diagnostic rule, the derived premise
< in Statement 7 s falsified by the data. The inference rule
used to derive this false premise is the rule speclfled in }
Statement 6. Its premise is true, but its-conclusion is false. s
Declare this rule faulty. S '

Apply Learning Rules to modify plans and heuristics:
Using “Guarantee Assumed Conditions” learning rule, the -
system looks for other rules in the knowledge base that
identify conditions for inferring Statement 7. It may find,
for example, the infere:xce rule:

o If opponent player-plays a high card c
and player P plays below C :
"then opponent wins trick and takes C -

In our current example, C is the queen of spades.
This rule now replaces the faulty.rule in Statement 6 with
the new premise . . R

Player P plays below the queen ‘of spades
added asa premlse to the plan and the proof The resultant plan is

If player P takes the lead

and P doesn’t have the queen of spades -

then -P continues leading spades - S o
below the queen of spades L

Flg 5—Knowledge-reﬁr'ement example

ERIC 2

Aruitoxt provided by Eic:

ERI

Aruitoxt provided by Eic:

26

Table 5

KNOWLEDGE-REFINEMENT STRATEGIES

Type of Problem

Refinement Strategy y

. Excess generalitfy
. Exccss specificity

. Concept poverty

. invalid knowledge
. Ambiguous knowledge -
. Invalid reasoning

. Inadequate integration
. Limited horizon

. Egocentricity

Specialize the rules, using case analysis, p:oof analysis, concept

hierarchy specializatmns ' 7

Generalize the rules, using equivalence of qéses, proof analysxs,)

concept hierarchy generalizations.

Create new concepts, by characterizing a particular problem,
adding its definition, consequences, and proposed solution to
knowledge base (e.g.,."‘sacrifice,” “‘safe” distribution).

Correct faulty advice, using proof analysm, diag'nom, and re-
finement. . N

. Explore alternative interpretations and prune those that pro-

duce least desirable effects.

Correct fau]ty operationalizations, usnng proof analysis, diag-
nosis, and refinement.

Develop comprchensive operationalizations that satisfy multiple

pieces of advice simultaneously; sequentially order separable.
criteria to satisfy most important considerations first.

Elaborate plans- to incorporate contingencies and predict,

monitor, and remember their outcomes; wherever possible pre- -

fer dynamic operationalizations to static ones.

During planning, consider what others are likely to do use your ‘
own plans to model what you would do in' their places; then .

monitor their behavior to assess its consistency with your model.

oy

)
i

St 2

. IV. CONCLUSIONS AND RECOMMENDATIONS

~ FINDINGS

In today’s environment, major advances in Al arise prlmarlly in conjunction
with knowledge-englneenng research. In this area, the power of 1nte1hgent systems
derlves primarily from the knowledge of human experts. The primary bottlenecks

in the construction of intelligent systems are formulating knowledge for program-’

* mers, converting the knowledge into effective procedures, and 1terat1vely evaluat-,

ing a program’s behavior, modlfylng the knowledge, and relmplementlng the corre- -

spondxng program code.
'We have formulated a framework for exploring solutions to these problems
“which provides a basis for experts to express domain knowledge in terms of natural
domain-specific concepts. This requires a formal knowledge-representation scheme
and a substantial set of built-in primitive concepts from which the specific domain
concepts are constructed. Once the concepts are defined, the expert can express two
- kinds of advice about the behavior of the program. Constraints specify restrictions
" on- allowable behavior, while heuristics prescribe desirable modes of behavior.
These may be ambiguous, incomplete, or even inconsistent.
This advice is converted into a working program through a process of oper-
ationalization, which transforms constraints and heuristics into effective proce-
" dures. In this process, the current program uses the expert’s supplied. knowledge

along with about 300 transformation rules. Some of these reformulate expressions

in equivalent terms, for example, by substititing a definition for some specific term.
Some of the rules prescribe sufficient or approxlmately sufficient mears of achiev-
" ing ends.-Finally, the operatlonahzatlon process uses instrumental reasoning tc

predict effects of potentlal actions or to reason backwa:'ds from desired effects to 3

sufficient conditions and actions.
In the process of operationalizing advice, a plan is developed thaf prescrlbes a
sequence of actions required to accomplish the goals and satisfy the constraints. Te
: develop this plan, the knowledge programmer employs a causal model to establish
proot" of the plan’s expected effects. When the plan is executed, new data about
tne situation and the effects are obtained. By contrasting observations with expec-
tations and premises in the proof, diagnosis rules indicate fauity components of the

. plan. These in turn lead to plausible refinements to the plan and corresponding: -

changes to the knowledge base. These refinements, in turn, relnmate the cycle of
operatlonahzatlon execution, and evaluation.
' We have found this paradlgm quite valuable as a source of new 1deas and

.....

operationalization component and have expenmented with several knowledge rep- - -

resentations in different tasks to develop diagnostic and learning rules. We have
not yet converged on a small set of rules for any aspect of this paradigm. We have

approxlmately 300-rules of operatlonahzatlon for two tasks (hearts and a s1mple .
music composition task), and fewer than 100 diagnostic and learning rules. How- - . .

" ever, we foresee these. numbers ‘increasing to as many as a few thousand. For
example many of Lenat’s proposed general concept—dlscovery methods (e. g gener-

P 34

28

alization and specialization heuristics) seem to apply to behavioral tasks as well as
to mathematics (Lenat, 1976; Lenat, 1977b). Qur current ceilings have been im-
posed by funding and personnel limitations: We have found many more.interesting
and productive lines of investigation than we have had resources to pursue.

«

RECOMMENDATIONS

We recommend that the proposed research paradigm be adopted widely. It
focuses on a set of learning problems that are coﬁ'ﬁiderably different from those
addressed in most previous learning research in AI 4nd cognitive psychology. Much
previous research (our own included) addressed isolated concept, pattern, and rule--
learning problems—tasks that seem fundamentally tied to limited applications.
Although the number of potential applicationis for pattern- or rule-induction sys-
tems is large, most learning probletns will arise in the context of more fully inte-

- grated intelligent systems. In these systems, capabilities will be required for recog-
nizing patterns, gathering information, assessing uncertainties, tradmg offbetween
multiple goals, satisfying a varlety of constraints, and dynamically applying gen-
eral principles to specific 81tuatlons These capablhtles in turn create demands f‘or
both rapid knowledge programming and rapid- refinements:* - -

We also recommend that learning issues be approached within the broader -
context of purposive behavmr In this context, the value of knowledge derives from
its capacity to. contribute to goal attainment. Goal-oriented planning provides a
basis for contrasting the expected effects of knowledge with actual effects. This in
turn dictates what new knowledge must be produced and how to integrate it into
a preexisting knowledge base. This type of teleological orientation strongly motx-
vates and guides knowledge acquisition and refinement.’ '

Finally, we suggest an increased emphasis on the core research problems stand-
ing between our current state of technology and the capability of automatic knowl-
edge programming and refinement discussed in this report. The primary research
problems include (1) representations for concepts, constraints, and heuristics amen-
able to machine interpretation and semantic analysis; (2) translators for mapping
natural domain descriptions into these knowledge representations; (3) operationali-
zation and planning; (4) plan evaluation and proof analysis; and (%) knowledge-
refinement and concept-dlscovery heunstlcs 4

! A corollary to this recommendation argues that when constructing or modlfymg Al programs, we
should try to analyze the reasoning involved. One step in this direction is to identify operators for
transforming specifications into working code. (See Balzer et al., 1977, Barstow, 1977; Mostow & Hayes-
Roth, 1979a.) _

BIBLIOGRAPHY ,

Allen, J., Anatomy of LISP, McGraw-Hill Book Company, New York, 1978. -
Anderson, R. H., “The Use of Production Systems in RITA to Construct Personal
- Computer ‘Agents’,” SIGART Neuwsletter, Vol. 63, 1977, pp. 23-28.
Anderson, R. H.,, and J. J. Gillogly, Rand Intelligent Terminal Agent (RITA):
Design Phllosophy, The Rand Corporation, R-1809-ARPA, February 1976.

_Balzer, R., A Mathematical Model for Performing a Complex Task in & Card

Game,” Behavioral Sciences, Vol. 2, No. 3, May 1966, pp. 219-236.- .

Balzer, R., N. Goldman,-and D. Wile, "Informahty in Program Speclﬁcatlons,” Proc.
5th Int. Joint Conf Artzﬁczal Intellzgence, Cambndge, Massachusetts 1977
pp.-389-397.

Barr, A., J. Bennett, and W. Clancey, Transfer of Expertwe A Theme for AI Re-

. search, Technical Report HPP-79-11, Stanford University, March 1979.

_ Barstow, D, “A Knowledge-Based System for Automatic Program Construction,”
Proc. 5th Int. Joint Conf. Artificial Intelligence, Cambridge, Massachusetts,
1977, pp. 382-388. _

Biermann, A. W.,and R. Krishnaswamy, “Constructing. Programs from Example,

 IEEE Trans. Software Engineering, Vol. SE-2, No. 3, 1976: "

Brown, J. S, and R. R. Burton, “Multiple Representations of Knowledge for Tutori-
al Reasoning,” in D. Bobrow and A. Collins (eds.), Representatwn and Mean- _

: " ing, Academic Press, New York, 1975, Pp. 311-349. '

Buchanan, B. G., and T. Mitchell, “Model-Directed Learmng of Production Rules,”
in D. A. Waterman and F. Hayes-Roth (eds.), Pattern-Directed Inference. Sys-

tems, Academic Press, New York, 1978, pp. 297-312.

- Buchanan, B G, G Sutherland and E. A. Feigenbzum, “Heuristic Dendral: A
- Program for Generatlng Explanatory Hypotlieses in Organic Chemistry,” i
B. Meltzer and D. Michie (eds.), Machine Intelhgence 4, American Elsewer
New York, 1969, pp. 209-254. o _

Chureh, A, The- Calculus. of Lambda Converszon, Prmceton Umvermty Press, 3

*_ Princeton, 1941 =

Davis R., “Interactive Transl‘er of hl\pertlse Acqulsltlon of New Inference Rules,”
Artificial Intelligence, Vol. 12, No. 2, - August 1979, pp. 121-158.

- Davis, R., “Knowledge Acquisitio \m Rule-Based Systems——Knowledge About Rep-

resentations as a Basis for System Construction and Maintenance,” in D. A."

Waterman and F. Hayes-Roth (eds,), Pattern-Directed I nference Systems, Aca-
: . demic Press, New York, 1978, pp. 99-134. :

" Davis, R., B. Buchanan, and E. H. Shorthﬁ'&fgroductlon Rulesasa Representatlon
for a Knowledge-Based Consultation System,” Artzﬁctal Intellzgence, Vol. 8,

- 1977, pp. 1545, ‘
Davis, R., and J. King, “An Overview of Producti Systems,‘” in E. W. Elcock and .
D. Michie (eds.), Machine Intelhgence8 John 'ley&Sons, New Yox'k 1976 '
pp. 300-332. \
Duda, R. O, P.E. Hart N dJ. Nllsson, and G L. Suther and “Semantlc Network

Representatlons ink Rule-Based Inference Systems,”. m\) A.Watermanand F.*- -

Hayes-Roth‘(éd 5.5, Pat tt—rn Dzrected Inference Systems, l\cademlc Press, New_'
- York, 1978 PR’ 203-221 ,

29

30

Fagan, L., “Ventilator Manager: A Program to Provide On-Line Consultative Ad-
' vice in the Intensive Care Unit,” Technical Memo HPP-78- 16, Computer
Science Department, Stanford University, September 1978,

Faught, W,, D. A. Waterman, P. Klahr, S. J.. Rosenschein, D. Gorlin, and S. J.
Tepper, EP-2: An Exemplary Programrming System, The Rand Corporation,
R-2411-ARPA, February 1980.

Feigenbaum, E. A., “The Art of Artificial Intelhgence Themes and Case Studies of
Knowledge: Englneenng,” Proc. 5th Int. Joint Conf. Artificial Intelligence,
Cambridge, Massachusetts, 1977, pp. 1014-1029. ~

Feigenbaum, E. A., B. G. Buchanan, and J. Lederberg, “On Geuerahty and Problem
Solving: A~ Case Study Using the Dendral Program,” in B. Meltzer #nd D.
Michie (eds.), Machine Intelligence 6, Amerlcan E]sev1er, New York, 1971, pp

. 165:190.

Hayes-Roth, F., “Schematic Classification Problems and Thelr‘Squtlon,” Pattern ‘
Recognition, Vol. 6, No. 2, Winter 1974, pp. 105-113. @

Hayes-Roth, F., “Patterns of Induction and Associated Knowledge Acquisition Al-
gorithms,” in C. H. Chen (ed.), Pattern Recognition and Artificial I ntelllgence,
Academic Press, New York, 1976a. '

Hayes-Roth, F., “Representation of Structured Events and Eﬂ‘iment Procedures for
Their Recognition,” Pattern Recognition, Vol. 8, No. 3, July 1976b, pp. 141-150.

Hayes-Roth, F., “Uniform Repx‘esentatlons of Structured Patterns and an Al
gorithm for the Induction of Contingency- Response Rules,” I nformatzon and
Con;rol Vol. 33, February 1977, pp. 87-116. -

Hayes-Roth, F., “The Role of Partial and Best Matches in Knowledge Systems,” in
D.A. Waterman and F. Hayes-Roth (eds.), Pattern-Directed Inference Systems,
Academic Press, New York, 1978a, pp. 557-574.

‘Hayes-Roth, F., “Learning By Example,” in A. M; Lesgold et al. (eds.), Cognltwe :
Psychology and Instruction, Plenum, New York, 1978b. :

Hayes- Roth, F., and J. Burge, “Characterizing Syllables as Sequences of Machine:
Generated Labelled Segments of Connected Speech: A Study in Symbolic
Pattern Learning Using a Corjunctive Feature Learning and Classification
System,” Proc. 3rd Int. Juint Conf, Pattern Recogmtton, Coronado, Cahfomla,
1976, pp. 431-435. - :

Hayes-Roth, F., P. Klahr, J. Burge, and D. J. Mostow, Machlne Methods forAcqulr e
ing, Learning, and Applylng Knowledge, The Rand Corporatiozs, P-6241, Octo-
ber 1978.

Hayes-Roth, F., and J. McDermott “Leamlng Structured Patterns f‘rom Exam
ples,” Proc 3rd Int. Jomt Conf. Pattern Recognltton Coronado, Cahfornla,

) 1976, pp. 419-423. -

Hayes-Roth, F., and J. McDermott, “An Interference Matching Technique for In-
ducing Abstractions,” Comm ACM, Vol. 21, No..6, June 1978, pp. 401-410.

Heidorn, G. E., “Automatic Programming Through Natural Language Dialog: A
Survey,” IBM J. Research and Devlopment, Vol. 20, May 1976, pp. 302-312.

. Heidorn, G. E., “English as a Very High Level Language for Simulation Program

ming,’ Proc ACM SIQBLAN Symposium on Very ngh Level Languages, L

Santa Monica, Califofnia, 1974, pp. 91:100. -

‘ '-"”Lakatos I, Proofs am{ Refutatzons Cambndge Umvermty Press, Cambrldge, 1976 E
\ N “ o

31

Lenat, D., “AM: An Artificial Intelligence Approach to Discovery in Mathematics
as Heuristic Search,” SAIL AIM-286, Stanford Artificial Intelligence Labora-
tory, Stanford, California, 1976. Jointly issued as Computer Science Depart-
ment Report No. STAN-CS-76-570. ‘

Lenat D., “*Automated Theory Formation i in Mathematlcs ? Proc. 5th Int. Joint
Conf. Artificial Intelligence, Cambridge, Massachusetts, 1977a, pp. 833-842.

Lenat, D., “The Ubiquity of Discovery: 1977 Computers and Thought Lecture,”
Proc. 5th Int. Joint Conf. Artificial Intellzgence, Cambridge, Messachusetts,
1977b, pp. 1093-1105.

~ Lenat, D. B, and G. Harris, “Designing a Rule System that Searches for Scientific

Dlscoverles,” in D. A. Waterman and F. Hayes- Reth (eds.), Pattern- Dzrected
Inference Systems, Academic Press, New York, 1978, pp. 25-51.

Lenat, D. B., F. Hayes-Roth, and P. Klahr, Cogmtwe Economy, The Rand Corpora-
tion, N 1185-NSF, June 1979a.

Lenat, D. B,, F. Hayes-Roth, and P. Klahr, “Cognitive Economy in AI Systems,”
Proc. 6th Int. Joint Conf. Artificial Intelligence, Tokyo, 1979b, pp. 531-536.

" Miller, M. L., and I. P. Goldstein, “SPADE: A Crammar Based Editor for Planning

and Debuggmg Programs,” AI Memo 386, Massachusetts Institute'of Technol
ogy, Artificial Intelligence Laboratory, December 1976. ‘

‘Minsky, M. L, and S. Papert, PerCeptrons An Introduction to Computatzonal

Geometry, MIT Press, Cambridge, 1969.

Mitchell, T. M., “Version Spaces: A Candidate Elimination Approach to Rule Learn-
ing,” Proc. 5th Int. Joint Conf. Artificial Intelligence, Cambridge, Massa-
chusetts, 1977, pp. 305-310. '

Mostow, D.d., and F. Hayes-Koth, Machine-Aided Heuristic Programmmg A Para-
digm for Knowledge Engineering, The Rand Corporat’on, N 1007 NSF Febru- '
ary 1979a.

Mo=tow, D.J., and F. Hayes-Roth, “Operationalizing Heuristics: Some AI Methods
for Assisting Al Programming,” Proc. 6th Int. Joint Conf. Artlﬁczal Intelli-
gence, Tokyo, 1979b, pp. 601-609.)

Newell, A., “Heurigtic Programming: Ill-Structured Problems,”!in J. Aronofsky,
(ed.), Progress in Operatlons Research John Wilay & Sons, New York, 1969,
pp. 363-414. ’

Newell, A., and H. A. Simon, Human Problem Solvir.g, Prentice-Hall, Englewood

. Cliffs, New Jersey, 1972,

Pople, H. E., “The Formation of Composite Hypotheses in Dlagnostlc Problem
Solving: An Exercise in Hypothetical Reasonitg,” Proc. 5th Int. Joint. Conf
Artificial Intelligence, Cambridge, Massachusetts, 1977, pp. 1030-1037.

Pople, H.E.,J. D. Myers, and R. A. Miller, “The DIALOG Model of Diagnostic Logic
and its Use in Internal Medicine,” Proc. 4th Int. Joint Conf. Artzﬁczal Intelli-

" gence, Thilis, USSR, 1975, pp. 848-855. :

_Samuel A. L., “Some Studies of Machine Learning Using the Game of Checkers,

in E. A. Feigenbaum and J. Feldman (eds.), Computers and Thought McGraw-
Hill Book Company, New York, 1963, pp. 71-105. PR -
Shortliffe,” E. H,, Computer- Based Medzcal Consultatlons M YCIN Amerlcan ‘
Elsevier, New York, 1976. L
Soloway, E. M., and E. M. Riseman, “Knowledge-Dlrected Learnmg,” Proc Work-
shop Pattern-Dzrected Inference Systems, SIGART Newsletter, Vol 63, 1977,
Pp- 49-55. ‘ -

B

. L 38
! R AN e Y B P A PRt e O TP AN

% 32

Stefik, M., “An Examination of a Frame-Structured Representation System,” Proc.
6th Int. Joint Conf. Artificial Intelligence, Tokyo, 1979, pp. 845-852.
- Sussman, G. J., A Ccmputational Model of Skill Acquzsmon American Elsevier,
New York, 1975.
Sussman, G. J., and R. Stallman, “Heuristic Techmques in Computer Aided Circuit
' Analys1s ” Memo 328, Massachusetts Institute of Technology, Artificia! Intelli-
gence Laboratory, Cambridge, Massachuseits, 1975. .
Vere, S. A, “Inductive Learning of Relational Productions,” in D. A, Waterman and.-
F. Hayes-Koth (eds.), Pattern-Directed Inference %ystems, Academic Press,
New York 1978a, pp. 281-295.
Vere, S. A., “Multilevel Counterfactus.; for Generalizations of Relational Concepts
- and Productions,” Techpical Report University of Ilhnms, Chicago Circle,
1978b. 2
Waterman, D. A., Rule-Directed Interactive Transactzon Agents An Approach to

Knowledge Acqulsltzon, The Rand Corporai ion, R-2171-ARPA, February -

1978a.

Waterman, D. A., “Exemplary Programming in RITA ”inD. A. Waterman and F.
Hayes-Roth (eds.), Pattern -Directed Inference Systems, Academlc Press, New
York, 1978b, pp. 261-279. °

Waterman, D. A, and F. Hayes-Roth (eds.), Pattern-Directed Inference Systems,
Academic Press, New York, 1978.

Waterman, D. A,, R. H. Anderson, F. Hayes-Roth, P. Klahr G Martins, andS d.
Rosenschem Design of a Rule-Oriented System for Implementing Experuse,
The Rand Corporation, N-1158-1-ARPA, May 1979.

Winston, P. H., “Learning Structural Descriptions from Examples,” in P. H. Wm
ston (ed.), The Psychology of (‘omputer Vision, McGraw Hill Book Company,
New York, 1975. .

B¢

