
www.manaraa.com

ED 201 337

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
EEPORT NO
PUB,DATE
GRANT
NOTE
AVAILABLE FROM

EDRS. PRICE
-DESCRIPTORS

DOCUMENT RESUME

IR .009 351

Hayes -Roth, Frederick: And Others
'Knowledge Acquisition, Knowledge Programming, arld
Knowledge Refinement.
Rand Corp., Santa Monica, Calif.
National Science Foundation, Rashington, D.C.
ISBN-0-8330-0195-7; Rand-R-2540-115F
May 80
MCS77'03273
39p.
Rand Corporation, Main St., Santa Monica, 2A 90406
($3.00).

HF01 Plus Postage._. PC Not Available from EDRS.
*Artificial Intelligence; *Computers; Informatioa
Theory; Man Machine Systems; .*Programing; Research
Reports; Systems Development

ABSTRACT.
This report describes the principal findings and

recommendations of a 2-year Rand research projedt on machine-aided
knowledge acquisition an -discusses the transfer of expertise from
humans to machines, as'weil s the functions of planning, debugging',

.

knowledge .:efineient, andauton moos machine' learning. The relatiie
.advantagesof humans and machines in the building of intelligent
systems are 'explained. Background and guidance is provided for
policymakers concerned with the research and development of
machine-based learning systems'. The research method adoptel
emphasized iterative refinement of knowledge in' response to actual
experience; i.e., a machine's knowledge, was acquired initially from a
human who provided enough concepts, constraints, and problem-solving
heuristics to'' define some minimal level of performance. Sixty -,tap
'references are listed. (Author/FM)

************************************** -1**.i.***************************

* Reproduciiont supplied by -a: Ahe best that can be `made At'

* frOm the origine_ .4.'zumente.
****.******4c*******101c.***,************oz******************************C:

www.manaraa.com

U.S, OE PAR.T. :#T Q,. ALT;,
EOUCATiC ;It PiT,.f4FtV
NAT Iew '17:11',07r- cy

THIS °Dap '

DUCED EXA,.
THE PERSON Q.

.71, IV-

dt.c."

P FORO.
:ROM

ATtNG IT ?OiN7 IEW NIONS
STATED DO ERRE-

Nmt SENT,OFICI
E2.1)CATION Pr.,

IONAL I
OR P

rulE OP
c'2.e

t?.

KNOWLEDC] 4CQ1ISITIO
t;:(ISIOWLEDGE -PROGRAMMING,
AND .KNC. INLEDGF VFINEMENT

PREPARED UNDER A GRANT FRI7)i, i4F 4ATIONAL SCIENCE FU IDA.1:71ka'N

ERICK HA 'ES t 1") P41._ --,(U_7-R,
DAVID

MAL 'AO

SANTA A MONIXIX 90406

'PE=WF.Z1ON TO REPRODUCE THIS
IN MICROFICHE ONLY

'AS 5 GRANTED BY

T. Cockrell

"EL -T-r---IUCATIONAL RESOURCES
1A4--URNIATION CENTER (ERIC)."

www.manaraa.com

PREFACE

This.Tep,ort describes .th F ncipal findings and recommendation:i of a two-year
Rand research project on r ..amine- aide;' knowledge acquiSition, st.Toorted by a
grant fr-.7.7 e Intelligent Program Mathematical and Coiner Sciences
Divisior_. National' Science '0=de:don. It 'discusses th.s.: transfer of e=ertise from
humans cc -machines, as w-L_I as the functrit debuggi knowledge
refinement, and autoriommEi =chine tt, the air--nrs ,atterrp:
to explain the relative aik-E-annia. of :::.:,mares an c.. machinen the building
intelligent systems. This _ 3irrt mo",..ltes. on striproach to .--Iyhrid systeins in
which humans provide irrracaint. s and cnope wiith them in
the iterative eValuatiori and reiin=errz-nf t1e olit;edge-Es.sed s7stmn_ The report
provides background and :-,-aidan:7.2 for n:-.%,1,. ;makers concerned with de research
and development of machane-based lea. -2Z.L.g. Fyste.rm, and it should be of interest
to computer scientists, cognitive --psychnicgist a..rid others interested 3 machine
intelligence.

During this project, the research .7.;1;:ored mat.f alternative approaches
to machine-aided learning and con..:aidtvi Mar.thie nost prar7,:sir ftiture
work is to translate human experw un f rzi ial itntelligenn. program& then to
refine the implementations iteratiwir--aE316icated by experience. at:a-approach
blends machine capabilities with htm,:lini-texpertise in the generation ati::-iteratiye
Improvement of intelligent system ..

The report explains why the athm-s have the '17 explore ?his problem,
describes how they are pursuing-e:eir-nnals, and ...classes the pra-c..vre.s to date.
Because the stated task is very difficult, Rirf3to)as on177.been sc-rtithed; much
remains to be done.

Several computer programs 'nave nem. :.teveloc..A in the course .:Sthis-project
by various combinations of the authors cillabot-ators. Mos,,,6,4t has imple-
mented the, knowledgebrograrnming glos 1.1-,rt of his disserion research
supervised by Hayes-Roth. Hayes-Roth and itLahr :eve implemend three differ-
ent programs for representing and the ,..-_nowleclige of the.nrrts
While these programs actually play the ;moderately well, the wrest fbr as
lies in their alternative approaches talmrsgriedge7ep's....ciertation and control. Lenat
has implemented in his program RLL some 4,,-r r.be restructuring knowl-
edge discussed in ,Lenat, Hayes-Roth, and & 1979b). All of these
programs. should be. considered l'undamentalli ei --pe-J:.-tmental and ephemeral;
they serve primarily as "breadboards" for testing ot:..7.-ideas. In the future, they may
'give rise to additional experiments or more permanent arid extensive applied sys-
tems.

David J. Mostow is a doctoral candidate it .:;epartment of Computer
Science, Carnegie-Mellon University, and a con :tat: t.. The Rand Corporation.

iii

www.manaraa.com

SUMMARY

The scientist who wants to understand and construct learning systems must
first, refine "learning" and then develop a research method that eventually pro-
duceslearning mechanisms. In contrast to conventional views of learning that focus
on problems of feature selection, combination, arm weighting, the ,definition we
have used in thii study emphasizes a continual growth and refinement of knowl-
edge. From this point of view, a system learns by increasing the scope, precision,
validity, and power of its current knowledge. That knowledge includes descriptions
and models of the" environment, AB well as planning and problem-solving techniques
for achieving goals. Learning requires the system to augment, generalize, special-
ize, validate, and exploit the knowledge it possesses at any point in time.

The research method adopted here emphasizes iterative refinement-of knowl-
edge in response to actual experience. In this approach, a machine's knowledge is
acquired initially from a human, who provides enough concepts, constraints, and
problem-solving heuristics to define some minimal level of performance. We use
semiautomatic methods to convert the initial knowledge into a working program.
Then, when the initial program executes, we observe the resulting behaviors to
diagnose problems and design knowledge refinements. Although this refinement
process currently requires significant human contributions, we have formulated
methods that may make it possible to reduce or eliminate much of that involve-
ment.

This report explains the cyclic roles of understanding, planning, and evaluation
Wiring the development and extension of knowledge. A prerequisite for learning

an initial base of knowledge. Most learning results.' from the constructive appli-
cation, evaluation, and refinement.of that knowledge. By predicting probable conse-
cniences of our actions and noticing unfulfilled expectations, we can isolate and.
often quickly remedy weaknesses in existing knowledge. In this framework, a
learning system must use existing knovAedprq to plan reasonable courses of action,
carry those plans out, and then diagnose v,ie.,:;.7eases that explain observed failures
or unexpected successes. The processes oc'ph/ndng, acting, and evaluation cooper-
ate to produce new knowledge by refinin extending prior knowledge.

The suggested approach is illustrated b he following simple example: Let us
suppose that an intelligent system has b.'en assigned to control a power generator.
Its knowledge base describes the system's likely behaviors, sensor readings, and
control mechanisins. These behavioral specifications then relate assumed situation
conditions to optional control actions and their expected effects. For example, the
knowledge base might describe, the relationships among several Valves, pumps,
pipes, temperature gauges, and Control switches. Let us assume that rising temper-

ii),,atures produce some undesirable situation D. A plan to Conmensate for rising
temperatures indicated by sensor A might dictate turning, off valve B on C.
This plan would be associated with a rationalization, i.e., a proof or informal argu-
ment, establishing that when A indicates rising temperature, closing B on C will
counteract the\undesirable consequence D. The proof might alSo establish addition-
al expectations about corroborative sensor readings; side-effects produced by the
B closure. Let us net appose that, subsequently,: actually occurs. We can now

www.manaraa.com

vi

compare the assumptions and deductions in the rationalization with actual obser-
vations of the current situation. We may find that all the assumptions remain true,
but some deductions are falsified by data. In this case, we can identify the faulty
inference rules as those whose premises are true but whose conclusions are false.
Alternatively, we may find that some of the expected or pre-,upposed conditions do
not obtain. In this case, too, we can identify the source of die faulty expectation.
Once it has been identified, the fauLty rule becomes the su:_--ect of refinement.

In refining a faulty inferential rule, a variety of heuristics may be used. Each
potential change to existing knowledge reflects a new hypothesis about thebehav-
ior of the modeled system or the effects of actions upon that system. These hypotrie-
ses constitute the intelligent system's new knowledge. To illustrate any of these
learning heuristics requires an actual comparison between expectations and obser-
vations. But let us suppose that the plan for preventing D reasoned as follows:

wClosing B prevents water from reaching E (B-E rule), which, in turn, prevents vapor
from saturating F (E-F rule); and only a saturated F could cause D to occur (F-D
rule).Now a variety of diagnoses and refinements might arise. To pursue one of
these, suppose that F does not saturate but D occurs; we should reject the current
F-D rule. To refine this rule we would need to specify more accurately those situa-
tions in which the predicted F-D relationships occur. We might then use any of
several available techniques for constructing descriptions capable of distinguishing
the current situation from earlier ones in which the F-D relationship behaved as
predicted. The new discriminating specification would yield a new hypothetical rule
such as,. When condition X occurs, only saturating F causes D.

Alternatively, we may find a source of improved knowledge in the proof that
underlies the plan. This proof might introduce some unproved and invalid assump-
tions. In the current example, the belief in the effectiveness of closing B for preclud-
ing D might rest on the assumption that saturating F causes it to short-circuit and,
implicitly, that nothing else could. In practice, many assumptions of this sort enter
into planning quite implicitly. But in this case, a short-circuited F unit in the
presence of nonsaturation reveals the faulty assumption directly. Many more illus-
trations and examples of the diagnosis and refinemem process are described in this
report.

Some of the ideas described here have been implemented in working computer
programs that are described in detail elsewhere; however, in this study we have
concentrated primarily on improved problem formulations, concept developments,
and "hand-simulations." We anticipate that long-term research will be required to
implement working computer programs that can perform all the functions this
research paradigm. suggests.

www.manaraa.com

A.C.,KNOW- 17) BENTS

We gratefu. rantz7e contributions of ouT Rand, Stan-
ford, and Carne-_- Mt_LLon tlis work. John Burge coLiborated with
us on learning hr-...--stcs. -- mein made frequent contrL3utions to our
efforts on know .--1_=e ().. ,---?liasLenat assisted in the emvelopment of
knowledg,e reprf,P----tations, -,InurrEarz. .,d -m-ocedures for conitiv economy. As
advisors tz.-3 Jack '.ow, _ Jaime Carbonell cor7sibuted to our
understanding 0- ---.,arationahz e mart, however, represen A only the au-
thors' attitudes z: iot tht, oi -z otters with whom we have collaborated,

vii

www.manaraa.com

17ONTENMS

PREFACE

SUMMARY

ACKNOWLEDGME IS

Section
I. BACKGROC :' JACHINE-AIDED 7.7.:NO'-'=DGE ACQUISITION

V

Vi]

IN PErill.:(.7=77, 1

II: ADVICE-TILL: IND KNOWLEDGE FROaAMMING 6
Two Para m. Developing Expert c !stems 6
Convertir.-_-;_i:no ledge into an ExecutaLke Program 9
Example _ -- Or a Li nnalization 11
Operatic.-- iziE. rategies, Tactics, an: cedures 16
Integrat 17.

III. PLAN EV:._,-JATI:-*,-,1 AND .KNOWLED EFINEMENT 19
Bugs R =- ,,,Jed Program Execution 19
Diagnos:--:.7 and fixing a Reasoning E- 20
Sumnial-v 24

IV. CONCLUE7 NS AND RECOMMENDAT.ONS 27
FindingL 27
Recomr---7.dations 28

BIBLIOGRAPHY 29

www.manaraa.com

I. BACKGROUND: MACHINE -AIDED KNOWLEDGE
ACQUISITION IN PERSPECTIVE

The processes of knowledge acquisition and learning have fascinated peop,,,
throughout much of history. In this century, the growth of behavioral and inform:
tion sciences has stimulated. vaous forms of basic and applied learning researc_
Behavioral nsychology, for example, has made impressive gains in developi=
practical procedures for imtroved training of humans an animals. This type _

work focuses primarily on the nature and the appropriate timing of contingrr,
reinforcements. The essential finding has been that a reward received soon after
some desirable behavior occurs increases the chance that the behavior will recur.
Cognitive psychology, on the other hand, emphasizes the ideas and concepts gw-
erning ordinary thought. For example, researchers in this field attempt to explain
how humans induce common category concepts such as "dog" or "criminal" fro=
examples. Researchers in the relatively new field of artificial intelligence (Al) 1.-.ave
addressed both of these kinds of learning problems. However, their emphas - on
machine learning imposes demanding constraints on potential theories. Fc AI
purposes, a theory of learning must lead to a computer program that exh. bits
improved performance over time.

This report describes only one of many approaches to machine learning. Thus,
we shall first review briefly the related AI research that forms the current scientific
context. The several approaches that have developed over time have emphasized,
in order, adaptively adjusting feature weights; generalizing examples of categories,
transformations, and more general procedures; using heuristics to synthesize new
concepts; and directly transferring human knowledge to computers.

Early AI work studied adaptive learning schemes that bould adjust control
parameters to correlate the machine's output with a desired standard. In this sense,
the early learning devices acted somewhat like adaptive control devices. The Per-
ceptron (Minsky & Papert, 1969), for example, was a pattern-recognition device
that classified test patterns by computing weighted sums of feature-detector
outputs. When the sum exceeded some thresho3d, the response indicated corre-
sponding class membership; if the sum fell below the threshold, the pattern was
rejected froth the class. When an incorrect decision occurred, a learning algorithm
prescribed how to adjust the feature weights. Because the machine adjusted its
weighting factors to accommodate its training experiences, this kind of learning
might be considered the first of many subsequent paradigms for "learning by
example." (A different application of a similar technique addressed tactics in
the game of checkers (Samuel, 1963).)

Over time; AI researchers moved increasingly toward a belief that intelligent
behavior requires substantial world knowledge. Most intelligent tasks require spe-
cific featurettletectors, complex descriptions of patterns and structures, and cone:
spondingly complicated procedures for comparing one description with another.
Without these, very few 14:man capabilities could be simulated. Soon after the
development of behavion.l learning theories and devices like the Perceptron, scien-
tists began to point out the need for these more complex mechanisms. Work in
machine-vision programs, for pxample, established the need for specialized detec-
tors for edges, corners, and intersections and sophisticated procedures for following

8

www.manaraa.com

2

and interpreting their connecHnn__:_. scenes. These kinds of ir .;,ernal structures lay
outside the scone of the earli framewo'rks. A number of AI researcheri
then developed improved __Jr learning by example that could generalize
rules from arbitrarily comply:. ,_,---7-7:77,ural descriptions (Buchanan et al., 1963; Bu-
chanan & Mitchell, 1978; Hariti,11:::::,z..1.9.74; Hayes-Roth, 1-976a; Hayes-Roth, 1976b;
Hayes-Roth, 1977; Hayes-Ro---. _W--rib; Hayes-Roth & Burge, 1976; Hayes-Roth &
McDermott, 1976; Hayes-Ro & ilizDermott, 1978; Mitchell, 1977; Soloway & Rise-
man, 1977; Vere, 1978a; Vere_ .11 7.3i-.); Winston, 1975):These procedures use initially
provided feature detectors a_F weli as "structural" or "relational" connections to
describe each example of a g en class. Then by partial-matching the descriptions
of many examples, commor subdescriptions emerge as candidate general rules
(Hayes-Roth, 1.78a). This methodology has supported machine induction of trans-
formational grammar rules (Hayes-Roth & McDetmott, 1978), chemical reaction
rules (Buchanan et al., 1969; Buchanan & Mitchell, 1978), and simple robot plans
(Vere, 1978a), among others_

The basic limitation of this more recent work derives from its "subtractive"
approach to learning. The learning programs devised'under this approaCh produce
new rules by detecting which of the currently known features and relations appear
jointly in each example. By assumption, each example reflects eriterial features as
well as some irrelevant features peculiar to the specific example. Learning by
example, in this context, simply requires subtracting the irrelevant features in each
case. While this approach can be every useful for -practical problems In pattern
recognition and data interpretatibn, it provides little insight into the discovery of
new features or 'new functions for performing a task.

Two recent research projects have shed some light on such discovery. .problemS.
Exemplary-programming research at Rand (Wate'rman, 1978b; Faught et al., 1980),
has investigated the problem of inferring programs capable of recreating the in-
teractions betWeen a human and a machine engaged in a task (see also Biermann
& Krishnaswamy, 1976). The creation of .a program from a human/machine dia-
logue requires methods that are more constructive or "synthetic " than other learn-
ing-by-example tasks. The two chief problems concern interpretation of the exam-
ple behaviors and the subsequent regeneration of corresponding beha-, ior in new
contexts. Interpreting an arbitrary human/machine interaction appears, to require
a variety of sources of knowledge, inc:ading sources for explaining (1) the meaning
of special typed symbols, (2) the state of various syStems employed during the
session, (3) the semantics of computer system outputs, (4) the goal of the person
performing the task, and (5) the problem-solving procedure that person apparently
applied. Each of these types of knowledge contributes to understanding both why
and how the person and the machine cooperated to solve the task. To construct a
generalized program that can replace the person in such tasks, we must convert
this passive understanding of the task's purpose and solution methods into effective
procedures. These procedures, if truly general, must accomplish the same'effects
although various situational characteristics will differ from the initially observed
data. This requires several types of knowledge in addition to that previously noted:
knowledge concerning system control and interactions; knowledge of planning and
problem-solving; and kritnyledge of programming methods.

Another recent project that illuminates the synthetic nature of learning at-
tempted to simulate the discovery process in mathematics (Lenat, 1976; Lenat,

9

www.manaraa.com

1977a; Lenat, 1977b; Lenat & Harris,,1678). This project .employed two types'Of '-
knowledge to induce -mew concepts of elementary set theory. 'The _first type of
.kilowledge consisted of .a variety of mathematiCal 'concepts,- sten as sets,
equalities, and functions. Over time, the program's conceptual knowledge grevv as
new concepts were created from existing ones. The methods for discovering new
concepts constituted the second type of knowledge. A few hundred rules called
"disco.y ery heuristics" modified existing concepts to produce new ones. For exam-
ple, several heuristics formulated new concepts by "generalizing' old, ones. Al-
though,the program knew at the outset the concepts of a list (defined as "an ordered
collection of elements") and length, it conjectured for itself a new concept that
generalized these notions to produce the concept of "length of a list of identical
elements." In this way, it produced the concept of unary numbers, that is, a list of
n tick marks meaning the number n. Other rules formed new concepts by specializ-
ing existing.concepts, by searching for, examples of newly conjectured concepts, Or
by forming new mathematical functions with arbitrary attributes (e.g., by restrict-
ing binary functions that applied only to cases where the first 'and second argu-
ments were equal). In this way, several insightful and interesting developments of
mathematical history were retraced .in a few hours of compute? time.

The last type of machine learning we must mention might be called "transfer
ti of expertise" (Anderson, 1977; Balzer et al., 1977; Davis et al., :1977; Davis, 1977;

Davis, 1978; Hayes-Roth et al. 1978; Heidorn,_197_6;_Heidorn,-1-974.,Mostow&---
Hayes-Roth, 197K-Mostow & Hayes-Roth, 1979b; Samuel, 1963; Waterman, 1978a;
Waterman et al., 1979; Barr et al.: 1979). Work in this area has aimed toward
constructing intelligent systems according to heuristic techniques prescribed by '
human experts (Feigenbaum, 1977). The major obstacle to implementing intelligent
programs described in this way arises from the need to translate human knowledge
into computable formalisms. Several research projects have demonstrated the via-
bility of using English-like, rule-based languages (Aliderson & GilIogly, 1976; Davis
& King, 1976; Shortliffe, 1976; Waterman & Hayes-Roth, 1978; Waterman et al.,
1979) that enable umans to express their knowledge in rules of the form, If there
is a drilling site, hose iron content exceeds 12 ppm and whose location is, .within
12 miles of an oil field, then the probability of a moderate iron deposit is high. While
this particular'tule is fanciful, a number of expert systems have been creat'd for
problems as diverse as infectious blood- disease therapy (Shortliffe, 1976), artificial_
respirator maintenance (Fagan, 1978), internal medicine (Pople, 1975 & 1977), and
geological prospecting (Duda et al., 1978). The major lines of continuing effort in
this context aim (1) to develop improved high-level languages for such rule-bas,ed
programming (Waterman & Hayes-Roth, 1978; Waterman et al., 1979) and (2) to
assist in the construction and maintenance of large sets of rules by developing
metaknowledgeknowledge about the likely and appropriate kinds of knowledge
that should enter the data base (Davis, 1978; Davis, 1979; Stefik, 1979).

The, principal concepts of previous 'earning research that we have discussed are
summarized in Table 1. The table also gives rough definitions of these terms as well
as brief descriptions of the mechanisms AI res °archers have proposed for accom-
plishing various types of learning.

Our current research attempts to integrate and extend the best aspects of these
alternative approaches to machine learning and knowledge acquisition. Specifical-

1 0

www.manaraa.com

4

Table 1

PREVIOUS LEARNING CONCEPTS AND MECH,NISMS

Concept Tratlitional Meaning Mechanism

Learning Changing behavior to improve-
performance

Adaptive learning Changinc 'behavior output
procedures to more closely approximate

desired standard. ./
4-

Learning by example Inferring a general classifica-
tion rule from training sets.

c Exeniplary
programming

Concept discovery

Transfer of expertise

Knowledge
acquisition

Inferring a general procedure
from sample human/machine
dialogue.

Inferring the existence and
definition of a general class.

Supplying human problem-
solving knowledge to a
machine.

Iricremental addition of
knowledge to an intelligent
system.

Rote memorization and con4 ion g
to contingent reinfortement.

Adjust association weights Wnnecting ,
stimulus features to- ouiliuts by fetid- '
back (positive/negative). . -, 2.7

Propose any boole.an cOinbination of
features consistent 'with the exemples
as the classifying rule. .
Infer the human's purpqse: that
motivates- the dialogue, interptet, the
dependencies between mnhioe and.,
human inplits, then create a program
to mimic the human.

Detect that several distinct things:.or-7'
events share some 'features,' find a ;'
common description, and propose it %

at; a concept definition;, or .lieurik,e,%:.
tically modify a prior concept defitif-;
tion, conjecture the conceals validity,
and find examples of it. .

Program corresponding pioceduies di- -7

rectly; or express . the knowledge
within a narrow formalism s94121e
for machine interpretation; or,expre "s
the knowledge in a high-level problem- ,};+ Y; 4 i
solving language (e.g., a rule-based .. ',..... ',; r...r v ,,1,..,-

system). '* -- ...

.,
.

°

k

Formulate a representation for a
type of knowledge the system uses,
use any mechanism toc:ideitify new
units of knowledge, and ad4.4laer to
the knowledge base.

ly-, we believe the following contributory factors to learning can and should be
accommodated in a single system:

.1. Contingent reinforcementwhen behavior produces undeiirable copse,
quences, the knowledge responsible should be altered, and tendencies that
produce desirable outcomes should be strengthened.

2 7 Learning by examplesystems should benefit from and generalize their
experiences.-

3. Knowledge as the source of powera learning system should acquire,
riuggyulate, and apply knowledge in the pursuit of increased capabilities.

4. The understanding of goals and the capability for planning to achieve
them.

_ .

5. Acceptance of human advice and knowledge about .the: task.

ae

,e*

r

www.manaraa.com

5

htegrating these five capabilities into a system will require significant effort,
and only a small proportion of the needed programs have been implemented to
date. On the other hand, we now understand many of theresidual problems clearly.
Section II explains our formulation of and approach to the probleirld understand=
ing and assimilating knowledge about an arbitrary task. The concepts and mecha-
nisms that characterize our approach are summarized in Table 2. Knowledge is
acquired from humans, used to develop plans for achieving goals, and finally con-
verted into executable programs. Section III discusses an iterative cycle of plan-
ning, acting, and evaluation that relates initial knowledge to specific behaviors and
finally to new or mode t-.1 concepti After relating observed effects to specific prob-
lematic components oc 343.3 - and, in turn, attributing these to erroneous elementsb
of domain knowledge, tne system diagnoses deficiencies and conjectures new
knowledge elements. Such knowledge refinements engender a new cycle of plans,
acts, observed effects, and inductions: ,.,earning, in this paradigm, is equivalent to
the iterative improvement of perfcirmance aKising from discoVeries made while
implementing and re ning knowledge.

Table 2_,

LEARNING CONCEPTS AND MECHANISMS IN THE CURRENT APPROACH

Concept Meaning Mechanism

. Hu4nbnachine Human and in.lChine co-
cobp6rati- operate to build intelligent

systems and improve them
over time.

Advi

Gcril.directed
planning

Contingent
reinforcement)

Learning by
,example;

Knowledge
refinement

°

Humans define domain
concepts, specify behavioral
constraints, and suggest
problem-solving methods.

Development of a plan for
achieving the expressed
goals that uses suggested '
methods and satisfies ex-
pressed constraints.'

Strengthening of rewarded
behavioral tendencies
and4eakening of others,

Use of actual situations
and results to trigger
learning.

Amendment or extension of
knowledge in response to
behavioral feedback.

Human.provides initial advice on task
knowledge and 'problem-solving meth-
ods; human aids in converting the
advice into working progiams and in
diagnosing and refining knowledge.

Develop a knowledge representation,
express the knowledge in this form,
and, integrage it into a working pro-
gram semiautomatically.

Work' backward from goals to 'suf-
ficient conditions and actions by
deductively pursuing logical, heur-
istic, and instrumental transformations.
These transformations symbslically
manipulate the domain concepts, con:
straints, and problem-solving. methods
to produce any effective Procedure.
The planning rocess establishes as-
sumptions and xpectations about
plan-related situati s and effects.

Reinforce knowledge contributing to
favorable outcomes; diagnose and re-
fine knowledge causing failures.

Compare expected outcomes ,to actual
outcomes and assumed conditions to
observed conditions in order to diag-
nose fallacious planning knowledge
and to suggest knowledge refineknents.

Adjust the conditions assumed neces-
sary or'sufficient for an action to pro-
duce an effect;-generalize or further
specify the expectations' associated
with an action.

t

www.manaraa.com

II. ADVICE-TAKING AND KNOWLEDGE PROGRAMMING

TWO PARADIGMS FOR DEVELOPING EXPERT SYSTEMS

Many of the recent successful applications of AI have shown the power of
implementing, more or less directly, the heuristic rules of human experts. In tasks
requiring only one or two types of inferential procedure, such as interpreting
symptoms and test results in medical diagnosis (Shortliffe, 1976), nearly all domain
knowledge can conform to a few generic forms or representations. Many appli-
cations of this type haVe adopted an if-then rule formak for expressing the causal
and inferential relationships (Feigenbaum et al., 1971; Waterman et al., 1979). To
derive: implications of known facts, the system applies theyules to any, data that
satisfy the rule antecedents (the if component), and the corresponding rule conse-
quents become derived facts. The system infers likely causes of observed symptoms
by reasoning deductively from observations to plausible causes. When the situation
data match rule consequents the -then components); the system hypothesizes that
the associated antecedent conditions may also be true. In this way, the system
reasons backward from effects to likely, causes.

These systems succeed, impart, because they use constrained rule formalisms
and perform only one or two specialized kinds of inference. These constraints
enable program designers to provide naturalistic languages in which nonprogram-
mers can conveniently express their knowledge. Such English-like languages make
it easy for experts in various domains to create large and powerful rule sets by
communicating directly with the computer. Because of their specialization,.these
systems can also help in checking the consistency and completeness of the human
rule sets.

The simplicity of these systems, of course, means that they lack the capabilities
needed for solvingmost types of problems. Although many domains have problerris
.similar to the medical diagnosis problem, most intelligent systems need to perform
a wider variety of actions than interpreting symptoms in terms of their underlying
causes. If we consider such interpretation tasks as a special kind of perceptual
process, we can easily see that intelligent behavior involves more than interpreta-
tion. Usually, we think' of perception, planning, adaptive control, and knowledge
acquisition as essential components of intelligence. We are presently, unable to
formulate all of these acti vities in terms of one uniform type of representation that
requires only a small number Of related inference methods.

Thus, although a human expert may know exactly what intelligent behavior
requires, in some new domain of interest, the current state of the art requires that
a human programmer design and implement a unique system for most new teaks.,
Weeks or months after the initial transfer of knowledge from the expert to the
programmer, a program emerges ready to run. Figure 1 illustrates this typical
process.

Of course, when the program finally runs, it, typically produces a, varie;:y of
unexpected results. At this point, both the expert and the programmer discover
that the original knowledge apparently underspecified the program, because a
variety of situations produce unanticipated effects. Four types of problems explain

6 13

www.manaraa.com

EXPERT

Undesirable
Behaviors

Desirable
Behaviors

7

Linguistic Expression
of Initial Knowledge

Specification

Evaluatipns

Programmer

Program

Test Behaviors

Representations4 inference-Methods--
Programming Techniques

Test SitiatiOns

Fig. 1Expert system develoPment and testing ."

most of the behavioral deficiencies: (1) The expert neglected to express rules to
cover all of the special cases that arise; (2) the expert's rules did not produce correct
conclusions, because they made erroneous assumptions; (3) although the program-
mer's implementation 'decisions were consistent with ambiguities in the original
specifications, they generated undesirable behaviors; or (4) the prograinmer over-

, looked or incorrectly implemented some of the expert's'advice.
Observations of undesirable behaviors motivate .a variety of discoveries and

changes: New knowledge arises from efforts to handle additional special cases; the
expert modifies his initial knowledge to correct the errors in it; the''expert refines'
his initial rules to resolve problematic ambiguities; the programmer' modifies his
inference methods or associated program code-so that the program behaves as it
should. Unfortunately, all of these-changes require programmer intervention, and
most of them take signifiCant time and effort.'

Iterative refinements generally cause programs to become progressively more
obtuse in their kndwledge representations and control structures. This in turn,
makes it increasingly difficult for the expert to manage or cornprehend his knowl-,
edge-based system.! Ordinarily,-the costs of programming and refinement are oner-
ous; few programs! ever satisfy their designers, because design goals continually
evolve as experience reveals additional system' shortcomings.

This analysis suggests an alternative paradigm for the programming and itera-
tive refinement of intelligent systems. The principal components of this paradigm
are shown in7Fig.J 2.

This paradigm views tie programming problem primarily as one of translating
expert advice into an operational program, and the iterative improvement problem

www.manaraa.com

EXPERT M.1.731*

ADVICE
(Domain Knowledge) :

Concept Definitions ,
Behavioral Constraints,
Performance Heuristics

A

Test
Situations

Modified
Knowledge

Knowledge
Programmer

Program

Knowledge
Base

Behaviors

Diagnosis
and

Knowledge
Refinement

V

Expectations

111111Fout..m

Fig. 2Knowledge programmi and knowledge refinement'

as one of diagnosing program behavior to modify those elements of knowledge that
produce undesired behaviors. This proposed scheme emphasizes the problems of
understanding high-level advice, converting it into effective behavior, and, inevita-
bly, changing the knowledge and reiterating the cycle. These problems are referred
to as knowledge acquisition,1en owledge programming, and knowledge refinement,
respectively.' For some time to come, all of these processes will require some
human participation. Thus, throughout this report we will describe semiautomatic
procedures forperfortning these functions.2

In the remainder of this section, we explain the primary problems andproposed
methods for the first two processes, i.e., acquiring the expert's knowledge by under-
standing advice and converting this advice into executable programs. These are the
tasks of the knowledge programmer. In the process of knowledge programming, the
knowledge programmer develops plans and procedures used by the resulting pro-
gram. These plans create expectations concerning the way the program should
behave. Contrasts between observed and expected behavior stimulate highly con-

. Knowledge acquisition, in our paradigm, refers to the transfer of expertise-from a human expert
to a machine. The machine acquires the human's knowledge in the form of, concepts and heuristics.
When the machine extends its initial knowledge by various learning methods, we refer to this as
knowledge refinement. Different researchers might apply the term knowledge.acquisition to varying
aspects of these 'processes.

2 We do not know if machine learning techniques will ever achieve sufficient levels of success to
obviate the role of humans in such efforts. Thus, we see,machines more as calculating aids to humans
'than as standalone investigators of complex domains. For the foreseer 'ale future, at least, humans will
play a major role in guiding deductive processes that the machines execute more rapidly and systemati-
cally than would otherwise be possible.

xr

www.manaraa.com

strained searches for underlying deficiencies in the knowledge base. These deficien-
cies, in turn, suggest knowledge refinements. The refinementprocesses of diagnosis
and knowledge modification are described in Sec. III.

CONVERTING KNOWLEDGE INTO AN EXECUTABLE PROGRAM

We believe that a very large class of intelligent systems can be specified quite
easily. A behavioral description would include consffaiiits on permissible actions
as well as prescriptive methods for attacking problems' in the domain.- Our ap-
proach rests on the central idea of expressing these behavioral constraints and
heuristics in terms of natural domain concepts. A description of mathematical
discovery methods, for instance, should employ terms familiar to a mathematician.
When we ask a matherhiatician for advice abot his problem, such as what to do
or when and how to do it, wr; should allow him to talk in his own terms. Asking
him to express hii knowledge in terms familiar to computer programmers forces
him to translate mathematics into programming. On the other hand, asking a
programmer to bridge the gap betWeen the mathematician and the computer re-
quires him to translate between cultureshe must first comprehend much of the
field of mathematics and then map its concepts and methods into his own repertoire
of computer capabilities.

To obviate the need for cross-cultural translation,.we are developing systems
that will accept an expert's advice expressed in familiar domain concepts. To under-
stand the advice, we need to know the meaning of each constituent concept, and
we must transform higher-level advice into actual procedures that the computer
can perform. Our approach aims to assimilate individual concepts as terms with
formally defined properties. Then, we attempt to understand advice (e.g., con-
straints among rflementi, or heuristic rules for goal-directed actions) as specific
compositions of the constituent terms. At 'present, much of this overall process is
understood, and some of it has actually been accomplished by our Computer pro-
grams. We will sketch, the primary features of this approach in the following
paragraphs. (Detailed technical descriptions are given in Hayes-Roth et al., 1978;
Mostow & Hayes-Roth, 1979a; Mostow & Hayes-Roth, 1979b.)

From the general perspecti ve,' knowledge programming converts advice ex-
pressed in some naturalistic syntax into actions in the task environment. This
requires several processeS: parsing the advice into syntactic structures; interpret-
ing these structures by converting them to meaningful semantic representations;
operationalizing the meaning structures by converting them into effective, execu-
table expressions; integrating multiple pieces of advice into a coherent set of proce-
dures; and, finally, applying these procedures in actual situations to generate ac-
tions.' These operations use -a knowledge base that stores individual domain con-
cepts and their interrelationships (see Fig. 3). Assimilating each new piece of advice

3 While all five of these subtasks are difficult, we have focused our efforts on the problem of operation-
alization. Parsing and interpretation are fairly well understood as n result of the attention they have
received in natural-language-understanding projects. Operationalization is a new topic of study. In the
new paradigm, emphasizing rapid implementation of expert knowledge and rapid reimplementation of
modified kn,:wledge, operationalization plays a crucial role. Integration is also a very important and
difficult problem. Unfortunately, we have not addressed this problem in a substantial way during the
course of this research project. A neat solution to the integration problem would yield a single, compre-
hensive program that could be applied simply, as if it were a typical computer procedurei

www.manaraa.com

10

ADVICE

PARSE .

1
INTERPRET

144OPERATIONALIZE

INTEGRATE

APPLY

ACTIONS

KNOWLEDGE BASE:

Concepts,

Conceptual Relations,

Assumptions,

Inferences

Fig. 3Information ,flow in knowledge programming

requires the knowledge programmer to appreciate how the advice relates to other
elements of the knowledge base. Thus,the knowledge base both feeds the assimila-
tion processes anlrepresents the incremental addiiions they produce. ,

Several' diffeltnt tasks we have explored in, this .paradigm have exhibited
remarkably similar properties. Each task employs a smallcset of doniain-specific
concepts, a few constraints or rules, and an open-ended set of prescriptive heuristic
mpthods. Such problem domains include music composition, legal reasoning, tacti-
cal planning, and game playing. We have found that a familiar card game, hearts,
provides a good basis for illustrating the major points of this research (see also
Balzer, 1966). The problem represented by the game of hearts is discussed below.

17

www.manaraa.com

EXAMPLES OF OPERATIONALIZATION

What does it take to specify a program that will simply play hearts in accor-
dance with the rules?' The published rules of the game define mandatory behavior-
al constraints. A program that behaves in accordance with these rules will play a
legal, albeit poor, game. A few simple rules will illustrate the nature of this advice-
taking problem.

Players rule. The game is played by four players.5

Players sequence rule. During a trick, players play
in clockwise order around the table.

Trick rule. A trick is a sequence in which each player
plays one card.

Trick leader. rule. The first person to play in the first
. trick is the one who has the two of clubs.. The first
player plays the two of clubs. In other tricks, the \
winner of the preceding trick plays first.

i Follow suit rule. Each player, if possEe. must play a
card in the suit of the first card played in the trick.

I Win trick rde. In each trick, the player who plays the
.; highest card in the suit led wins thetricls.

' r

The processes of parsing and interpreting these rules would generate knowledge-
base elements of the following sorts:6

Players rule.

Players {pl, p2, p3, p4}
ti

Players sequence rule.

if pl has jUsf played in a
in the same trick then

if p2 has just played a
in the same trick then

if p3 has jiist played in -a
in the same trick then

if p4 has just plaYed in a.
in the same trick then

Trick rule..

if t is a trick
then 41 plays ci during t

trick and p2 has not played
p2 plays next;
trick and p3 has not played
pl plays next;:
trick and p4 has not played
p4 plays next;
trick and pl has not played
p1 plays next;

,
4 The reader who is concermed with the concept rather thin the technical details ofthis, problem can

skim the technical material that follows without, seriously affecting the continuity of the discussion.
5 For simplicity, we ignore variations on this rule (for example, one variation allows a three-player

game).
° To avoid unnecessary formality and technicality, we have expressed propositions and conceptual

statements in terms of simple English equivalents.,.Readers interested in our LISP-based representa-
tions may refer to the technical reports cited previously.

www.manaraa.com

12

followed by q2 plays c2 during t
followed, by q3 plays c3 during t
followed by q4 plays c4 during t
and lql,q2,q3,q4 = players
and c1, c2, c3, c4 are elements of cards.

Trick lectder rule.
if and only if player p has card two of clubs
then player p plays first in the first trick

and player p plays the' two of clubs in the first trick;

if and only if player p wins a trick t
then player p plays first in the trick t' following t;

Follow suit rule.
if the first card c played in a trick t is of suit s'

and playeer p before playing in trick t has some cards in suit s
then player p plays some card d in suits during trick t;

Win trick rule.
if and only if

the card c is the first card played yin trick t
and the suit of card_ c is s
and the cards played in trick t are called C
and C' is the subset of C whose suit is s
and the highest valued element of C' is card d
and card d was played by player p

then filayer p wins trick t;

The concept definitions supporting such interpretations are of two sorts. The
first are domain-dependent definitions, such as card, game, hand, 'and play. For
example, play would be defined as-an action by a player that changes the location
of a card from the hand of the player to the pot The;possible locations of cards
include a player's hand, a player's pile, and; the pot. In. our work, we use a form of
the lambda calculus (Church, 1941; Allen; 197a) for encoding these definitions. The <-
second type of definition ,is used for representing domain-independent concepts,
such as set, subset, soini, exists, sequence, if, then, and and

Let us suppose for the current example that only:the preceding rules were
specified, along with a minimal additional set prescribing how players receive their
initial hands and. how the winner of each trick takes the cards in the pot., Could we

,directly 'aPply the knowledge to produce behavior? The answer: is no, becauSe the
constraints recognize acceptable behaVior without telling us how to generkte it
That is, the constraints partially define what to do without explaining how:Discov-
ering how to achieve such desired behavior requires us to operationedixe the advice.
In effect, we need to convert the advice concerning what into executable methods.

Evethin this simple case, the search for effective methods to achieve the deaired
goal requires planning and problem-solving, which incidentally produce additional
insights into the domain. .

The general methods we :lave employed for operationalization may be summa-
rized as goal-directed planning. We begin with a statement ot desired behavior

www.manaraa.com

13

which, in this :ample, might be "player p plays a card c in the current trick t."
The-problem i. c convert this goal expression into a procedure that achieves the
goal and the constraints. Because this statement does not tell us how we
may choose a satisfactory-card, we regard it as an ineffective expressioh. We then
attempt to transform this exAssion into a composite of individual subexpressions
where each component represents an effective expression; that is, each corresponds
either to a known value or an executable procedure that can produce a. value.
Several different problems need to be solved, and we use a variety of different
methods.

In this simple example, we might attempt to transform the expression by
adapting a general-purpose AI problemsolving method to this task. For example,
we might. attempt to adapt the general method of generate-and-test (Newell, 1969;
Newell & Simon, 1972). To exploit this method, we need only find some generator
that suggests each possible action and then apply some effective procedure for
verifying that the suggested action satisfies the constraints. This approach would
lead us to an operationalization such as the following:

Plan 1:
consider each card c in turn;
ass--le you were to play c;

call prove that c would satisfy the constraints, ,

twn play c.

This plan hat: Iwo interesting aspects that reflect some deep and recurring issues.
,First, forMulating a plan of action without having the actual situation data in hand
requires very general and abstract n.lasoning. When we do not know exactly which
cards have been played and which cards are in --a--player's hand, for example, we
have difficulty formulating any specific action. In an actual situation,-however, we
might find a similar judgment straightforward. For example, we could easily prove
that playing the three daubs is legal when the two of clubs has just been played.
Theie two alternative tasks---forming general plans before situations unfold. vs.
planning on the spotwe distinguish as ordinary operationalization vs. dynamic
operationedization. The first point then is that in most circumstances, dynamic
operationalization seems both easier and more effective. Its primary disadvantage_
arises from the need to postpone planning until actions are required. This means
that, at each point, the system cannot act until it has thought through the issues.

The second point concerns the degree of effectiveness we demanz.: il.om an oper-
ationalization. The general plan proposed above may or may not be effective. It
presupposes two capabilities: (1) generating each possible card in and (2)
proving that the card satisfies the constraints. While in simple cases like the hearts
task we can assuredly achieve the first capability, we can rarely establish valid
proofs of such abstract propositions as in the second. The difficUlty arises from the
complete generality of the assertion to be proved, i.e., "c would satisfy the con-
straints." To certify Plan 1 as effective, we need a procedure that we know can prove
such lsertions. Thus, we might simply assume the use of a general theorem-
proving procedure to perform this subtask. This proCedure, in turn, may or may
not be assuredly effective. The overall degree of effectiveness of Plan 1 would then
depend on the theorem prover's own effectiveness and the eventual success or
failure of its theorem-proving efforts.

www.manaraa.com

14

The point we wish to make in this context concerns the degree of effectiveness
we ascribe to an operationalization. Two kinds of uncertainties ordinarily preclude
developing assuredly effective plans. First, most real-world tasks address inherent-
ly uncertain environments. In these tasks, the constraints and behavioral heuristics
may not be strictly provabl,.3. Worse yet, in tasks that require both rewath-seeking
and risk-avoidance behaviors (e.g., playing hearts), knowledge usually larescribes
simultaneously opposing, hence inconsistent, objectives. Second, plans themselves
introduce a direrent type of uncertainty. This uncertainty, considered above, arises
from the residual ineffectiveness or incompleteness of the operationalization. We
have found that both kinds of uncertainties require heuristic solutions. That is,
intelligent systems can reason informally to partially control uncertainty but they
cannot eliminate it completely. Much of our research revolves around the nature
of the heuristics both human experts and knowledge programmers can employ to
control such uncertainty efficiently.

Because Plan 1 represents quite a "weak" or unspecific operationalization, we
might reasonably seek .a stronger, or more detailed solution. A more interesting
plan for playing a card can be derived by adopting another general Al. problem-
solving approach. In this case, we view the problem from the perspective of the
general heuristic search method. This method specifies that to reach a goal state
G from an initial situation S, we should choose actions froni some set A that
successively change attributes of S until they satisfy G. To apply this general
method to the problem at hand requires matching aspects of the given problem to
components of,the general approach. What elements of the current problem corre-
spond teG, S, and A? The initial statement corresponds to G: Reach astate where
player p plays a card c that satisfies all of the constraints. Situation S corresponds
to a set of quite general assertions about what is known', Such as that player p has
cards C. The set tof possible operations A is not immediately apparent.

To transform an initial state S into a goal state G. we employ three different
kinds of transformations: logical heuristic, and instrumental. Logical transforma-
tions convert an initial expression into a logically equivalent one One con mon kind
of logical transformation is a symbolic. type of case analysis.qo analyze' an ex-
pression, we reexpress it as a set of alternatives, each of which rests on an addition-
al, distinctive assuniption characterizing that particular cage. For example; we
might reexpress the assertion that p plays card c as a disjunction Of two Cases: (1)
p plays first in the trick and plays card c; or (2) some other player p' plays first in
the trick, and later in the trick p plays card c. This traniformatiOn preserves the
truth value of the initial expression, but; more importantly, it suggests-one promis-
ing way to divide and conquer the initial problem.

Case analyses break a single general problem into separable subproblems and
t, the same time further ;characterize aspects of the task situation that bear

dir tly upon constraint satisfaction...lnCase2,_ where p -is assumed toplarafter
the tria(liasbegun, p must choose a card in the same suit as the first one played.
In this exmple, the-Case 2 assumption can key the knowledge prograrniner to
apply the foltaw suit rule in subsequent operationalization of this path.

Heuristic tris 1:Irmations make plausible, if not necessarily valid, substitu-
tions in expression*. E7 example, in developing a plan of play with attention to
likely effects, we might t nsform the initial expression "after the trick is opened,
p plays card c" into the twofq llowing cases: (3) "ifter the trick is opened, p plays,

www.manaraa.com

ANN 15

card c, and c is the trick-winning "ard," or (4) "after the trick is opened, p plays a
card whose suit is different from the suit of the first card played." Whilethese cases
are verifiably exclusive; they do not exhaust the possible situations that might
arise. Hence, a transformation of this sort might be plausible but not equivalence-
preserving. We have found many practical situations where such heuristic transfor-
mations can lead to clever, if somewhat incomplete, plans. In this illustration, for
example, Case 3 leads to application of the win trick rule, further specifying the suit
and value of card c. Case 4, on the other hand, suggests an operationatzation that
confronts the follow suit rule. The prerequisites for that rule in turn become addi-
tional conditions on this line of reasoning.

The third type of transforination to expressions models the result of instrumen-
tal action in the task environment. In the initial problem of generating a legal play,
the only actions known to the system would be dealing, playing, leading, and
winning a trick. Each of these corresponds to a transforniation that will affect the
description of any supposed game situation. In the analysis of Case 3 above, in
addition to inferring requisite properties of the winning card c, we can also deduce
that p moves cards from the pot to his pile. In this simple example, the only
instrumental action that sheds much light on operationalizing the initial expression
is the primitive action of playing a card, i.e., moving a card from a player's hand
to the pot. Later, however, the actions, of winning a trick and moving cards from
the pot to players' piles will play significant roles in operationalizing behavioral
heuristics suggested by experts.

The knowledge programmer represents a variety of general reasoning methods
as transformations and applies these to convert high-level objectives into corre-
sponding effective procedures. The reasoning methods exploited include case analy-
sis, partial- matching between an expreSSion and the description of a general meth-
od to guide attempts at adapting the general method to the specific problem, sim-
plification of complex expressions, approximation of uncertain, or combinatorial
alternatives, and reformulation of an expression in terms of other known concepts.
Each specific, operationaliiatiori task requires some or all of these methods. For
example,if the-knowledge prOgrarnmer adapted the heuristic search method to the
task of playing, a-legal card, one resulting operational expression for "p plays card
c and satisfies the constraints" would correspond to the following:

Plan 2:
if p plays first in 'the trick

and this is the first trick
and p has the two of,clubs

then p plays the two of clubs,

else if p plays first in the trick
and p has a card c whose suit is s

then p plays c,.

else if card c' was the first card played in the trick
the quit of c' is s

and p has a card c whose suit is, s
then p plays c,

22.

www.manaraa.com

16

else if p has a card c
then p plays c.

CT course, because we have thus far considered only the mandatory constraints on
behavior, no expertise has been included in this initial set of advice. In addition to
necessary conditions on behavior, the kinds of heuristics we want to acquire
directly from experts tell the program how it sholld behaVe. This goes beyond the
notion of behavioral-acceptability to the concept of desirability.-As anyone familiar
with law, music, hearts, and most other difficult tasks realizes, the bulk'-of human
knowledge in these domains directly concerns such prescriptive heuristics.

OPERATIONALIZING STRATEGI TACTICS, AND PROCEDURES

In a game like hearts, where the real objective, is to minimize winning tricks
that contain point cards, expert advice concerns strategies, tactics, and procedures
that can help reach this okjective. The rules of the game reward some kinds of risk
aversion and some kinds of risk-seeking behaviors. For example, a player can
improve his or her (relatiVe) score either by taking fewer points than ate opponents
or by taking all the points in a round. Thus, a.very simple type of heuristic advice
might be to "avoid taking points." We will consider this example briefly to convey
the nature of the knowledge-programming problem it exemplifies. (4 detailed tech -'
nical discussion of this particular example appears in Mostovv & Hakes-Roth;
1979b.)

Befbre proceeding with the exaMple, howeVer, we need to postulate a few more
bits of knowledge. We will assume the knowledge programmer has assimilated the
following facts: Any card that is' in the suit'of hearth has a point value of 1, and the
queen of spades has a point value of 13. We assume also that the concept "take"
has been defined to mean that a player winning a trick t takes all cards Playedin
that trick, i.e., he moves them from the pot (cards played in thetrick) to his pile.
The concept "avoid an event, it"..is defined to mean "prevent event X" or "achieve
not D--].'"-tr-iing such basic -d-efiiiitionsi our program has, transforniedl'h-emitial
ineffective advice "avoid taking points" into an effective procedure: It generates a
plan that recreates the typical high-level steps most peoPle apparently follow,
although it works through many more and lower-level steps than people conscious

Given the rules of the game and the advice to "avoid taking' points," people
reason roughly as follows: (1) Taking points means taking: cards with point 'values;
(2) the only way to take cards is to win a trick; (3) "avoid taking points" thus means
not winning a trick; (4) this in turn means playing a card that is not the highest one;
and (5) this suggests playing the lowest card in your hand.'

For the sake of brevity, we summarize theaCtual machine-aided deilvation at
the same high level as. the intreSpective human analysis. First, the program logical-
ly transforms "avoid taking points" by substituting for the term "avoid" its literal
definition. This produces an expresSion like -"establish not [player p takes points]."
Although the objects of "take" actions are cards and cards can have points, it is

1. After a little thought, people often notice ways to improve this plan, but we shill reconsider those
kinds of insights later when we discuss the role of plari evaluation as a source of knowledge refinement.

www.manaraa.com

17

impossible to "take" points directly. The program reasons heuristically that "tak-
ing points" seems equivalent to "taking cards that have points," From this, the
program notices thatca sufficient condition for taking points is winning a trick in
which some of the cards have points. To preclude this from happening, it reason's
that negating any of the necessary conditions should do. It then produces a new
expression that corresponds to "do not win a trick." It uses the constraints on trick
winnng to infer that the player wins only if he plays the highest card in the same
suit as tie card first played. Finally, it reasons instrumentally that this condition,
would not occur if he played a card °flower value. This type of plan leads directly
to a corresponding procedure for applying the advice. -- ---

In a similar way, the program has been used with human assistance to produce
plans for other kinds of advice in this game, For example, one useful heuristic for
new players is to "flush the queen of spades," i.e., force another player to play it.
The kind of reasoning the program uses to develop its plan is as follows: By sub-
stituting the definition of "flush," it infers that it needs to establish the condition
"some player p must play the queen of spades." It uses its concept of "must" and
the follow suit rule to infer that this objective requires that p have only one legal
card to play the queen of spades. This in turn entails either (1) p has only the
queen of spades or (2) player q leads a spade, and p's only spade is the queen. It
focuses on the second case and then develops a plan for how player q could force
such a situation. In brief, it develops a plan for q to win a trick to take the lead. /

Then as long as q retains the lead, q continues to lead spades. As players familiar
with the game will realize, this is an effective method for flushing the queen.8

INTEGRATION

We have done little thus far to address the question of integrating a variety of
separate pieces of advice: This type of problem lends itself to two approaChes. The
first aim at an overall consistent integration, While the second preSumes no such
comprehensive integration is feasible. As in th seceding examples, operationaliz-
ing a 'single -piece of advice -often requires simulta eouslY1 satisfying numerous
constraints. Such an approach to comprehensive inte ation fits the overall frame-
work we have illustrated throughout this section. In t e second type of approach,
we prestimably do not know the ways in which several pieces of advice interact or,
worse yet, the ways in which independent pieces may contradict one another..This
type of situation arises when we adviSe, for example, both "avoid taking points"
and "take all the points" or "take at least one point if no one else has."

Our approach; to integrating multiple pieces of advice takes two basic forms.
First, we try to. formulate ,independent recommendation's that themselves may
become the objects of metaheuristics. That is, we wish to accept advice about when,
how, and why to combine or favor One heuristic over another. Second, we want- to
infer these dependencies by understanding why -Some heuristics produce undesir-
able results in actual situations. In such cases, we wish to eliminate the anibiguity
by refining the initial heuristic to restrict its application to appropriate -situations.
This kind of refinement is discussed in Sec. III.

Readers may also develop variations of this plan that seem superior. Such variations are discussed
in more detail in Sec. III.

24

www.manaraa.com

18

In ,sum, we have presented our paradigm for knowledge:programming and
iterative reprogramming of intelligent systems. This section has focused on knowl-
edge-programming prOcesses, which are pertinent to both initial programming and
recurrent reprogramming. The next section motivates and explains the reprogram-
ming problem in mort detail. We have briefly explained the kinds of advice we,
expect our systems to assimilate and a variety Of metho4 for converting the advice
into operational programs. In this process, we see that the knowledge programmer
formulates plans that develop its initially vague concepts into effective procedures
for accomplishing goals. These plans also play a major role in identifying weak-
nesses in knowledge that stimulate learning.

25

O

www.manaraa.com

PLAN EVALUATION AND KNOWLEDGE
ttEFINEMENT

BUGS' REVEALED IN PROGRAM EXECUTION

To convert constraints
.

and heuristics into action, the knowledge programmer
develOPs a plan that integrates task-environme i` actions along with logical or
heuristic inferences. In planning, the knowledg pfogrammer reasons abotit_the
effects of the xariouS transformations it einpl ys: Some of its transformations
preserve logical equivalence, while others introduce approximate or plausible rea-
soning. These latter kinds of transformationi ay introduce undesirableaffects or
"bugs." The second phase of cnielligent syste development is concerned with the
identification, diagrrolis. and elimination o st,011 bugs.

We have developed a list of bugs that.a ise in knowledge programming. Some
of these arise from omission's, errors, or a biguity in the initial knowledge,.while
others are introduced by the knowledge-prAgramining process. Table 8 summarizes
theSe bugs: (Other AI researchers have c6nsidered bugs in problem-solving proce-
dures, but these have little in common 1th those under consideration here; see,
for example, Davis, _1978; Davis, 1979; .& Goldstein, 1976; Sussman, 1975;
Sussmann & Stallman, 1975; Brown -BArton,.1975.)

/

. 'Table 3

BUGS ARISING FR M KNOWLEDGE PROGRAMMING

Type of Problem_

1. Excess generality

2, Excess specificity

3. Concept poverty

4. 'Invalid knowledge

5. Ambiguous knowledge

Sot4ce of Problem

)11

. Sped cases 'overlooked'

tGenerality undetected.

Manifeataticm

:Vseful relationship not
detected:and exploited.

Misstatement of facts or
approxtmati?ns.

rrnplicit'dependencies not
adequately articulated. .

6. Invalid reasoning /Programmer incorrectly
transforms knowledge:.

7. Inadequate integration Dependencies among
multiple pieces of advice
incompletely integrated,

8, Limited horizon

9. Egocentricity

Consequences of recent
past or probable future
events not exploited,.

Little attention-paid to
probable meaning of
others' actions.

Good rule occasionally pro-
duces bad effects.

Rules fail to cover enough
.cases.

Limited power and capability
of siStem.

Expert's expectations violated.

Conflicts arise' in' some situa-
tions about what is best to do.

Knowledge programmer's ex-
pectations violated. ' -
Rejeqed action alternative's.
actually satisfy more criteria:
then seleated action does.

Judgmental logic seems static,
not sensitive to changing or
foreseeable situations.

No apparent adaptation of
one's behavior 'to
knowledge of other's 'plans.

www.manaraa.com

20

The nine problems listed in Table 3 span a large set of potential weaknesses in
intelligent programs. For the -sake of brevity, we will consider only one of these
bugs in detail as an illustration of knowledge-refinement techniques. We have
chosen invalid reasoning, because it illustrates many of the ideas that recur in
knowledge refinement. After we have explained our approach to debugging reason-
ing problems, we will briefly characterize the approaches taken for the other kinds
of problems as well.

DIAGNOSING AND FIXING A REASONING ERROR

We address here only a limited class of reasoning errors, namely those which
manifest themselves as discrepancies between the observed outcomes of executing
a plan and the expected outcomes. Here we are focusing on the expectations that
the knowledge programmer generates as by-products of its operationalizations and
integrations. The knowledge programmer acts as if it believes the transformations
used to convert .ineffective statements to specific procedures will produce results
satisfying the original objectives. This belief applies, in turn, to each successive
transformation applied during the planning process. However, the transformations
may in fact yield .procedures that do not always satisfy these expectations.

The approach we take to knowledge refinement in this type of problem begins
with an attempt to analyze an unexpected event. Thus expectations motivate and
trigger the knowledge-refinement ,pqicess, as shown in Table 4. By analyzing the
violated expectation, we identify both what went wrong and why. Then, we propose
changes to the underlying knowledge to remedy the problem. The success of this
method often depends on isolating missing, extraneous, or impreCise predicates
used to restrictsthe time at which'some action occurs. (This approachcparallels that

Table 4

KNOWLEDGE- REFINEMENT APPROACH

Step)..14' Source of Mechanism

1. Establish expectations During knowledge programming, planning establishes plausible
anteciedents and consequences of actions; these beliefs represent.
expectations:

2. Trigger analysis When an actual event violates an expectation, the reasoning be-
hind the expectation is reanalyzed in light of observable data.

3 LocatelaultY rules A set of diagnostic, rules debug tHe planning logic by contrasting
the a priori beliefs'with actual data. If a heuristic rule used by
the -plan assumes a false,premise or entails a false conclusion,
it is faulty.

4. Modify faulty. rules A set of learning rules suggest plausible fixes to the erroneous
heuristic rule. These might alter its preconditions, assumptions,
or expectations to keep it from' producing the same faulty re-
sult in a Subsequent situation. .

5. Reimplement and test Incorpofate 'a modified heuristic rule into a new system by re-
'invoking the knowledge programmer. Verify that the rule
eliminates the previous problem and test it in new lituittions.-

www.manaraa.com

21

discussed in Lakatos, 1976.) This become clearer in the context of a concrete
illustration.

As one example of the act-evaluate-refine process, consider what happens when
the machine attempts to execute the previously developed plan to flush the queen
of spades. The plan was, roughly, take the lead, then lead spades until a player is
forced to play the queen. Suppose that this plan worked well in several games, but
during one game a sequence like the following unexpectedly occurred: The machine
player wins a trick. It then leads the jack, of spades, and the other players follow
suit. The queen is sq, held by one of the players. On the next trick, the machine
chooses another spade to lead. This time, it has only two spades left, the four and
the king, and it chooses arbitrarily to play the king. The next player plays the five,
the one after him plays the queen, and the last plays the ten. The machine has just
won a trick according to its plan, and it has even flushed the queen. Unfortunately,
it has also taken 13 points, presumably a very undesirable outcome.

What might a person in the machine's situation do at this point? With apparent-
ly little effort, a person would recognize that the plan was buggy, because it
achieved an undesirable result that was unexpected. Implicit in the plan was the
notion that the player with the queen would be coerced into playing it and, presum-
ably, winning the spade trick with it. In response to this insight, a human player
would amend the plan appropridiely; The fix in this case wouldzrequire that when
trying to flush the queen, a player must lead only spades below, the queen.

Our learning methods capture the general logic behind this type of analysis.
There are many chains of reasoning that might lead to the same proposed' refine-
ment as our hypothetical human produced. We will explain one type of argument
that appears programmable.

Let us suppose that the machine (unlike a human) has no precise expectatiOn
regarding the queen-flushing plan. However, since it followed supposedly expert
advice, it has a general' expectation that bad consequences should not result. When,
as inAhis case, undesirable results occur, the program' tries to understand why it
suffered such an outcome and how it 'could have prevented it.

The machine analyzes the last trick to' infer cause-effect relations, based on
current knowledge. To take 13 points in the trick, it had to win the trick during
which the queen was played. So it conjectures for itself some refined advice: Flush
the queen of spades but do not win a ick in which the queen is played, . Because
this refined advice surpasses the original advice in quality, the machine has already
improved its knowledge. On the other hand, this high-level advice requires opeit-'-
ationalization if it is to be useful. However, our current knowledge programmer
does correctly operationalize this advice by producing a plan 'corresponding to the
following: Take the lead, then continue leading spades below the queen. Thus, this
type of hug is eliminated by formulating a desired refinement directly in terms of
a new high-level prescriptive heuristic. The refined heuristic, in turn, is implement-
ed by the same knowledge-programming methods previously used for accepting
advice from humans. (In some cases, as in this example, the refined heuristic can
also be implemented simply by modifying the previous plan, as opposed to starting
over from scratch.)

To continue our illustration, let us suppose that the machine begins to.apply its
refined plan. Because it knows that the plan has been refined to prevent it from
taking the queen of spades itself, it notes this specific expectation in the knowledge

www.manaraa.com

22

base as a predicted consequence of the plan. In a new game, however, suppose it
has the ten, jack, and king of spades. It wins a trick, then leads the ten. All players
follow suit with lower cards, so the machine leads again with the jack. Again it wins
the trick. At this point, its revised plan proscribes leading spades, so it plays a
diamond. Another player wins the trick, and continues to lead spades. The machine
is forced to play the king, and the player after it follows suit with the queen of
spades.

Again, contrary to its specific expectation, it wins the trick and takes 13 points.
NOW it attempts to discover why its expectation was violated. It constructs a cause-
effect model of the events leading to the disaster. In this model, it notes that at the
time it played the king, it had no other choices. So apparently, by that time, only
by keeping the other player from leading spades could it have prevented the
disaster. Alternatively, it reviews events prior to that trick to see what, if anything,
it did that contributed to creating a situation where no, options existed. It notices
that playing the ten and jack of spades earlier produced the state where it had only
the king of spades. It notes that these actions were taken with the express intention
of preventing it from taking the queen, but apparently they contributed directly to
just that outcome.

It now proposes to itself another refinement. It should prevent a reoccurrence
of this type of situation in the future. Its proposed advice: Do not lead low spades
if you can be forced to play a spade higher than the queen.' This, in turn, leads to
an operationalization that requires an estimation of the probable distributions of
spades among players. While we have developed some methods for handling such
probability functions, we have not yet implemented those needed for this particular
problem. However, as persons knowledgeable in the game will not..e, the proposed
concept of a card that is "safe" vi§-6-vis the opposing distributions is quite sophis-
ticated. In fact, generalizations of this "safe spade" concept, such as "safe in suit
x" or "safe with respect to all suits," play major roles in expert strategies.

As another example of knowledge refinement, consider again the-plan devel-
oped in Sec. II to avoid taking points. That plan proposed playing the lowest
possible card. Using this plan, the machine expects it will avoid taking points, but
there are numerous ways that the plan leads to violated expectations, eachof which
reflects characteristics similar to those in the queen-flushing examples. For exam-
ple; it may play its lowest card (a five, say) and still win a trick with points. This
causes it to weaken its expectations (i.e., to associate some uncertainty with this
predicted outcome). Pursuant to.such a play, it may take another trick with its
current lowest card (a ten, say), a?aki with points. However, if it had played the
ten before the five, it might have avoided winning the secondtrick, because in the
second trick the five might have been lower than another player's card. Each of
these problems gives rise to new attempts to refine both the expectations and the
plan, in a manner similar to that previously described.

This example has not actually been performed by a machine implementation. Before it could be
implemented, several difficult issues would arise. Foremost among these, the diagnostic system would.
need to conjecture several alternative problems and solutions. Each of these proposed solutions would
require, in turn, experimental testing through additional play. For example, the program might have
hypothesized the remedy, Do not begin to flush the queen of spades ifyou cannot retain the lead. This
heuristic seems beneficial, but we cannot be certain. Empirical validation of alternative heuristics seems
unavoidable.

www.manaraa.com

23

Our general knowledge-refinement strategy can be characterized simply, as
shown in Fig. 4.

The contrast between expectations and actual outcomes focuses the learning
system directly on specific problems. The system then attempts to find the flaws in
its original causal model in light of the new data at hand. This in turn suggests
additional conditions or new goals for knowledge programming.,

The overall approach we have taken to this problem employs three basic ele-
ments: (1) proofs, (2) diagnostic rules, and (3) learning rules. While these steps have
not actually been implemented on a computer, we have hand-simulated all of them.
The knowledge programmer associates with each plan and its expectations a proof
(or an informal rationale). The proof of a plan links assumed conditions to expecta-
tions by following paths representing the equivalence of logical transformations,
the plausible 'sufficiency of heuristic transformations, or the antecedent-consequent
relations of instrumental acts. At each point, 'a transformation links premises to
expectations, and these expectations may become part of the premises for a later
inference. In short, a proof maps a general model of cause-effect relations into a
specific derivation of the expected consequences of the planned actions.

ADVICE TRANSFORMATIONS
Action Plan ,
Expectations,
Causal Model

Behavior

1--

iprotiem$

Itiantlfied

.....",...........

r-.7---4.'REFINE
Learning
Heuristics

CONTRAST
Diagnostic
Hothistics

Outcomes

V
Refined Causal Model

and
Modified Advice

Fig. 4Knowledge-refinement strategy

www.manaraa.com

24

Diagnostic rules examine the proof in light of the evidence and identify hypo-
thetical deficiencies in the knowledge base. A typical diagnostic rule is as follows:

Invalid Premise Diagnostic Rule. If an expectation is violated, find a premise in
the proof of the expectation that is falsified by the data. If the false premise
follows from some inference rule whose own antecedent premises (necessary
conditions) are true, declare that rule faulty.

Learning rules, on the other hand, specify ways to modify heuristics to correct
deficiencies. We have 'generated a large set of such rules to date. Two examples of
learning rules are given below:

Require Implicitly Assumed Premise Explicitly. If an implicit assumption ofa rule
is falsified during proof analysis, add the premise to the required conditions
of the rule and delete any other premises that it implies.

Guarantee Assumed Conditions. If an assumed premise is falsified during proof
analysis, identify sufficient cona,tions for its validity and make these required
conditions for she associated plan component.

Figure 5 demonstrates how these diagnostic and learning rules are used to refine
the original "flush the queen of spades" plan as discussed above. Figure 5 also
exemplifies the knowledge-refinement approach outlined in Fig. 4.

We have thus found many ways to evaluate a plan against observable outcomes
to identify weaknesses, conjecture refinements, and evaluate these refinements
experimentally. Very little of this work has been implemented, because of the vast
number of possible learning strategies (see Table 5) and the wide variety of specific
possible applications. Any efforts to implement these concepts in a realistically
complex task will encounter considerable combinatorial difficulties. Each error may
suggest several hypothetical bugs and fixes. Each of these will require independent
empirical (or formal) validation, usually accomplished best by experimental testing.
The need for testing hypothetical concepts and rules will lead to alternative knowl-
edge bases and associated operational programs. Multiple systems of this sort are,
of course, difficult to manage even in 'limited Foftware-development environments.

SUMMARY

Once a plan is executed, much can be learned from a retrospective analysis.
When advice is provided initially, two important things are missing that later
support evaluation and discovery. The first new source of informaon is the actual
situation description. The details of the actual situation in which the plan executes
reveal and implicitly define important special cases that the general operationaliza-
tion overlooks. Second, having acted; we can see the true effects of our behavior
on the environment. This provides sources of confirmation or disconfirmation of
parts of our plans, which then stimulate focused efforts at diagnosis and knowledge
refinement. These provide numerous opportunities for concept formulation,' and
each, in turn, initiates a new cycle of knowledge acquisition, knowledge program-

. ming, and knowledge refinement.

www.manaraa.com

25

PLAN:
Flush queen of spades:

If
and
then

player P takes the lead
P doesn't have the queen of spades
P continues leading spades

Expectation:
P doesn't take the queen of spades.

Proof of expectation:
1. Player P takes the lead
2. P doesn't have the queen of spades.
3. P continues leading spades.
4. If player P takes the lead and P

doesn't have the queen of spades
and P continues leading spades

then opponent will play queen
of spades.

5. Opponent. will play queen of spades.
6. If an opponent plays queen of sp

then the opponent wins the trick
and opponent takes.the queen of
spades.

7. Opponent takes the queen of spades
8. If opponent takes the queen of spades

then player P doesn't take queen
of spades.

9. Player 'P doesn't take queen of spades.

Behavior in actual play: P leads king of spades;
Opponent plays queen of spades.

Premise (condition of plan)
Premise (condition of plan)
Premise (action of plan)

Heuristic rule
Derived premise from 1, 2, 3, 4

Heuristic rule
Derived premise from 5, 6

Heuristic rule
Derived premise from 7, 8

Outcome: P wins the trick; P takes the queen of spades.

Expectation of "Flush queen of spades" plan is violated.

Apply diagnostic rules to identify problems:
Using "Invalid Premise" diagnostic rule, the derived premise
in Statement 7 is falsified by the data. The inference rule
used to derive this false premise is the rule specified in
Statement 6. Its premise is true, but its conclusion is false.
Declare this rule faulty.

Apply Learning Rules to modify plans and heuristics:
Using "Guarantee Assumed Conditions" learning rule, the
system looks for other rules in the knowledge base that
identify conditions for inferring Statement 7. It may find,
for example, the inference rule:

If opponent player plays a high card C
and player P plays below C
then opponent wins, trick and takes C

In our current example, C is the queen of spades.
This rule now replaces the faulty.rule in Statement 6 with

the new premise

Player P plays below the queen of spades

added as a premise to the plan and the proof. The resultant plan is

If player P takes the lead
and P doesn't have the queen of spades
then P Continues leading spades

below the queen of spades

Fig. 5Knowledge-refiriament example

www.manaraa.com

26

Table 5

KNOWLEDGE-REFINEMENT STRATEGIES

Type of Problem Refinement Strategy

1. Excess generality

2. Excess specificity

3. Concept poverty

4. Invalid knowledge

5. Ambiguous knowledge

6. Invalid reasoning

7. Inadequate integration

8. Limited horizon

9. Egocentricity

Specialize the rules, using case analysis, woof analysis, concept
hierarchy specializations.

Generalize the rules, using equivalence of gases, proof analysis,
concept hierarchy generalizations.

Create new concepts, by characterizing a particular problem,
adding its definition, consequences, and proposed solution to
knowledge base (e.g., "sacrifice," "safe" distribution).

Correct faulty advice, using proof analysis, diagnosis, and re-
finement.

Explore alternative interpretations and prune those that pro:
duce least desirable effects.

Correct faulty operationalizations, using proof analysis, diag-
nosis, and refinement.

Develop comprehensive operationalizations that satisfy multiple
pieces of advice simultaneously; sequentially order separable
criteria to satisfy most important considerations first.

Elaborate plans to incorporate contingencies and predict,
monitor, and remember their outcomes; wherever possible, pre-
fer dynamic operationalizations to static ones.

During planning, consider what others are likely to do; use your
own plans to model what you would do in their places; then
monitor their behavior to assess its consistency with your model.

www.manaraa.com

IV. CONCLUSIONS AND RECOMMENDATIONS

FINDINGS

In today's environment, major advances in AI arise primarily in conjunction
with knowledge-engineering research. In this area, the power of intelligent systems
derives primarily from the knowledge of human experts. The primary bottlenecks
in the *construction of intelligent systems are formulating knowledge for program-.
mers, converting the knowledge into effective procedures, and iteratively evaluat-',
ing a program's behavior, modifying the knowledge, and reimplementing the corre-
sponding program code.

We have- formulated a framework for exploring solutions to these problems
which provides a basis for experts to express domain knowledge in terms of natural
domain-specific concepts. This requires a formal knowledge-representation scheme
and a substantial set of built-in primitive concepts from which the specific domain
concepts are constructed. Once the concepts are defined, the expert can express two
kinds of advice about the behavior of the program. Constraints specify restrictions
on allowable behavior, while heuristies prescribe desirable modes of behavior.
These may be ambiguous, incomplete, or even inconsistent.

This advice is converted into a working program through a process of oper-
ationalization, which transforms constraints and heuristics into 'effective proce-
dures. In this process, the current program uses the expert's supplied knowledge
along with about 300 transforMation rules. Some of these reformulate expressions
in equivalent terms, for example, by substituting a definition for some specific term.
Some of the rules prescribe sufficient or approximately sufficient means of 'achiev-
ing ends-Finally, the operationalization process uses instrumental reasoning to
predict effects of potential actions or to reason backwards from desired effects to
sufficient conditions and actions.

In the process of operationalizing advice, a plan is developed that prescribes a ,

sequence of actions required to accomplish the goals and satisfy the constraints. To
develop this plan, the knowledge programmer employs a causal model to establish
a "proof" of the plan's expected effects. When the plan is executed, new data about
the situation and the effects are obtained. By contrasting observations with expec-
tationi and premises in the proof, diagnosis rules indicate faulty components of the
plan. These in turn lead to plausible refinements to the plan and corresponding
changes to the knowledge base. These refinements, in turn, reinitiate the cycle of
-operationalization, execution, and evaluation.

We have found this paradigm quite valuable as a source of new ideas and
methods for knowledge acquisition and refinement. We have implemented only the
operationalization component and have experimented with several knowledge rep-
resentations in different tasks to develop diagnostic and learning rules. We have
not yet converged on .a small set of rules for any aspect of this paradigm. We have
approximately 300 rules of operationalization for two tasks (hearts and a simple
music composition task), and fewer than 100 diagnostic and learning ruleS. How-
ever, we foresee these numbers increasing to as many as a few thousand. :'For
example, many of Lenat's proposed general concept-discovery methods (e.g., gener-

www.manaraa.com

28

alization and specialization heuristics) seem to apply to behavioral tasks as well as
to mathematics (Lenat, 1976; Lenat, 1977b). Our current ceilings have been im-
posed by funding and personnel limitations: We have found many more interesting
and productive lines of investigation than we have had resources to pursue.

RECOMMENDATIONS

We recommend that the proposed research Paradigm be adopted widely. It
focuses on a set of learning problems that are considerably different from those
addressed in most previous learning research in AI and cognitive psychology. Much
previous research (our own included) addressed isolated concept, pattern, and rule-
learning problemstasks that seem fundamenfally tied to limited applications.
Although the number of potential applications for pattern, or rule-induction sys-
tems is large, most learning probleMs will arise in the context of more fully into-
grated intelligent systems. In these systems, capabilities will be required for recog-
nizing patterns, gathering information, assessing uncertainties, trading offbetween
multiple goals, satisfying a variety of constraints, and dynamically applying gen-
eral principles to specific situations'. These capabilities in turn create demands for
both rapid knowledge programming and rapid refinements.'

We also recommend that learning issues be approached within the broader
context of purposive behaVior. In this context, the value of knowledge derives from
its capacity to contribute to goal attainment. Goal-oriented planning provides a
basis for contrasting the expected effects of knowledge with actual effects. This in
turn dictates what new knowledge must be produced and how to integrate it into
a preexisting knowledge base. This type of teleological orientation strongly moti-
vates and guides knowledge acquisition and refinement.'

Finally, we suggest an increased emphasis on the core research problems stand-
ing between our current state of technology and the capability of automatic knowl-
edge programming and refinement discussed in this report. The primary research
problems include (1) representations for concepts, constraints, and heuristics amen-
able to machine interpretation and semantic analysis; (2) translators for mapping
natural domain descriptions into these knowledge representations; (3) operationali-
zation and planning; (4) plan evaluation and proof analysis; and (5) knowledge-
refinement and concept-discovery heuristics.

' A corollary to this recommendation argues that when constructing or modifying AI programs, we
should try to analyze the reasoning involved. One step in this direction is to identify operators for
transforming specifications into working code. (See Balzer et al., 1977; Barstow, 1977; Mostow & Hayes-
Roth, 1979a.)

www.manaraa.com

BIBLIOGRAPHY

Allen, J., Anatomy of LISP, McGraw-Hill Book Company, New York, 1978.
Anderson, R. H., "The Use of Production Systems in RITA to Construct Personal

Computer 'Agents'," SIGART Newsletter, Vol. 63, 1977, pp: 23-28.
Anderson, R. H., and J. J. Gillogly, Rand Intelligent Terminal Agent (RITA):

Design Philosophy, The Rand Corporation, R-1809-ARPA, February 1976.
Balzer, R., "A Mathematical Model for Performing a Complex Task in a Card

Game," Behavioral Sciences, Vol. 2, No. 3, May 1966, pp. 219-236.
Balzer, R., N. Goldman,-and D. Wile, "Informality in Program Specifications," Proc.

5th Int. joint Conf Artificial Intelligence, Cambridge, Massachusetts, 1977,
pp.-389-397.

Barr, A., J. Bennett, and W. Clancey, Transfer of Expertise: A Theme for Al Re-
search, Technical Report HPP-79-11, Stanford University, March 1979.

Barstow, D., "A Knowledge-Based System for Automatic Program Construction,"
Proc. 5th Int. Joint Conf. Artificial Intelligence, Cambridge, Massachusetts,
1977, pp. 382-388.

Biermann, A. W., and R. Krishnaswamy, "Constructing. Programs from Example,"
IEEE Trans. Software Engineering, Vol. SE-2, No. 3, 1976:

Brown, J. S., and R: R. Burton, "Multiple Representations of Knowledge for Tutori-
al Reasoning," in D. Bobrow and A. Collins (eds.), Repreientation and Mean-
ing, Academic Press, New York, 1975, pp. 311-349.

Buchanan, B. G., and T. Mitchell, "Model-Directed Learning of Production Rules,"
in D. A. Waterman and F. Hayes-Roth (eds.), Pattern-Directed Inference Sys-
tems, Academic Press, New York, 1978, pp. 297-312.

Buchanan, B. G., G. Sutherland, and E. A. Feigenbaum, "Heuristic Dendral: A
Program for Generating Explanatory Hypotheses in Organic Chemistry," in
B. Meltzer. and D. Michie (eds.), Machine Intelligence 4, American Elsevigr,
New York, 1969, pp. 209-254.

Church, A.; The Calculus of Lambda-Conversion, Princeton University Press,
Princeton, 1941,

Davis R., "Interactive Thinker of Expertise: Acquisition of New Inference Rules,"
Artificial Intelligence:V(31\12, No. 2, August 1979, pp. 121-158.

Davis, R., "Knowledge Acquisitionjn Rule-Based SystemsKnowledge About Rep-
resentations as a Basis for Sykem Construction and Maintenance," in D. A.
Waterman and F. Hayes-Roth (e), Pattern-Directed Inference Systems, Aca-

. demic Press, New York, 1978, pp. 134.
Davis, R., B. Buchanan, and E. H. Shortliffe, "Production Rules as a Representation

for a Knowledge-Based Consultation S tem," Artificial Intelligence, Vol. 8,
1977, pp. 15-45.

Davis, R., and J. King, "An Overview of Product' Systems," in E. W. Elcock and
D. Michie (eds.), Machine Intelligence 8,John ley & Sons, New York, 1976,
pp. 300-332.

Duda, R. O., P. E. Hart, N. J. Nilsson, and G. L. Suther and, "Semantic Network
Representations in Rule-Based Inference Systems,'-' inD. A. Waterman and F.
Hayes-RothTeilarRittern-Directed Inference Systems, Academic. Press, New.
York, 1978,. pp! 203-221.

www.manaraa.com

30

Fagan, L., "Ventilator Manager: A Program to Provide On-Line Consultative Ad-
' vice in the Intensive Care Unit," Technical Memo HPP-78-16, Computer

Science Department, Stanford University, September 1978.
Faught, W., D. A. Waterman, P. Klahr, S. J. RoSenschein, D. Gorlin, and S. J.

Tepper, EP-2: An Exemplary Programming System, The Rand Corporation,
R-2411-ARPA, February 1980.

Feigenbaum, E. A., "The Art of Artificial Intelligence: Themes and Case Studies of
Knowledge Engineering," Proc. 5th Int. Joint Conf. Artificial Intelligence,
Cambridge, Massachusetts, 1977, pp. 1014-1029.

Feigenbaum, E. A., B. G. Buchanan, and J. Lederberg, "On Generality and Problem
Solving: .A Case Study Using the Dendral Program," in B. Meltzer and D.
Michie (eds.), Machine Intelligence 6, American Elsevier, New York, 1971, pp.
165-190.

Hayes-Roth, F., "Schematic Classification Problems and Their Solution," Pattern
Recognition, Vol. 6, No. 2, Winter 1974, pp. 105-113.

Hayes-Roth, F., "Patterns of Induction and Associated Knowledge Acquisition Al-
gorithms," in C. H. Chen '(ed.), Pattern Recognition and Artificial Intelligence,
Academic Press, New York, 1976a.

Hayes-Roth, F., "Repres6ntation of Structured Events and Efficient Procedures for
Their Recognition," Pat_ tern Recognition, Vol. 8, No. 3, July 1976b, pp. 141-150.

Hayes-Roth, F., "Uniform Representations of Structured Patterns and an Al-
gorithm for the Induction of Contingency-Response Rules," Information and
Control, Vol. 33, February 1977, pp.. 87-116.

Hayes-Roth, F., 'The Role of Partial and Best Matches in Knowledge Systems," in
D. A. Waterman and F. Hayes-Roth (eds.), Pattern-Directed InferenceSystems,
Academic Press, New York, 1978a, pp. 557-574.

Hayes-Roth, F., "Learning By Example," in A. M. Lesgold et al. (eds.), Cognitive
Psychology and Instruction, Plenum, New York, 1978b.

'Hayes-Roth, F., and J. Burge, "Characterizing Syllables as Sequences of Machine-
Generated Labelled Segments of Connected Speech: A Study in Symbolic
Pattern Learning Using a Conjunctive Feature Learning and Classification
System," Proc. 3rd Int. Joint Conf. Pattern Recognition, Coronado, California,
1976, pp. 431-435.

Hayes-Roth, F., P. Klahr, J. Burge, and D. J. Mostow, Machine Methods forAcquir-
ing, Learning, and Applying Knowledge, The Rand Corporation, P-6241, Octo-
ber 1978.

Hayes-Roth, F., and J. McDermott, "Learning Structured Patterns from Exam-
ples," Proc. .3rd Int. Joint Conf. Pattern Recognition, Coronado, California,
1976, pp. 419-423.

HayesRoth, F., and J. McDermott, "An Interference Matching Technique for In-
ducing Abstractions," Comm. ACM, Vol. 21, No.,6, June 1978, pp. 401-410.

Heidorn, G. E., "Automatic Programming Through Natural Language Dialog: A
Survey," IBM J. Research. and Devlopment, Vol. 20, May 1976, pp. 302-310.

Heidorn, G. E., "English as a Very High Level Language for Simulation Program-
ming,!' Proc. ACM SIpPLA N Symposium on Very High Level Languages,
Santa Monica, California, 197.4,_pp. 91-100.

Lakatos, I., Proofs anc Refutations, Cambridge University Press, Cambridge, 1976.

www.manaraa.com

31

Lenat, D., "AM: An Artificial Intelligence Approach to Discovery in Mathematics
as Heuristic Search," SAIL AIM-286, Stanford Artificial Intelligence Labora-
tory, Stanford, California, 1976. Jointly issued as Computer Science Depart-
ment Report No. STAN-CS-76-570.

Lenat, D., "Automated Theory Formation in Mathematics," Proc. 5th Int. Joint
Conf Artificial Intelligence, Cambridge, Massachusetts, 1977a, pp. 833-842.

Lenat, D., "The Ubiquity of Discovery: 1977 Computers and Thought Lecture,"
Proc. 5th Int. Joint Conf Artificial Intelligence, Cambridge, ,Missachusetts,
1977b, pp. 1093-1105.

Lenat, D. B., and G. Harris, "Designing a Rule System that Searches for Scientific
Discoveries," in D. A. Waterman and F. Hayes-Ileth (eds.), Pattern-Directed
Inference Systems, Academic Press, New York, 1978, pp. 25-51.

Lenat, D. B., F. Hayes-Roth, and P. Klahr, Cognitive Economy, The Rand Corpora-
tion, N-1185-NSF, June 1979a.

Lenat, D. B., F. Hayes-Roth, and P. Klahr, "Cognitive Economy in AI Systems,"
Proc. 6th Int. Joint Conf. Artificial Intel1gence, Tokyo, 1979b, pp. 531-536.

Miller, M. L., and I. P. Goldstein, "SPADE: A Grammar Based Editor for Planning
and Debugging Programs," AI Memo 386, Massachusetts Institute of Technol-
ogy, Artificial Intelligence Laboratory, December 1976.

Minsky, M. L., and S. Papert, Peraeptrons: An Introduction to Computational-
Geometry, MIT Press, Cambridge, 1969.

Mitchell, T. M., "Version Spaces: A Candidate Elimination Approach to Rule Learn-
ing," Proc. 5th Int. Joint Conf. Artificial Intelligence, Cambridge, Massa-
chusetts, 1977, pp. 305-310.

Mostow, D. J., and F. Hayes-Roth, Machine-Aided Heuristic Programming: A Para-
digm for Knowledge Engineering, The Rand Corporati.on, N-1007-NSF, Febru-
ary 1979a.

Mostow, D. J., and F. Hayes-Roth, "Operationalizing Heuristics: Some AI Methods
for Assisting AI Programming," Proc. 6th Mt. Joint Conf. Artificial Intelli-
gence, Tokyo, 1979b, pp. 601-609.

Newell, A., " Heuristic Programming: Ill-Structured Problems,')in J. Aronofsky
(ed.), Progress in Operations Research, John Wiley & Sons, :New York, 1969,
pp. 363-414.

Newell, A., and H. A. Simon, Human Problem Solvir.g, Prentice-Hall, Englewood
. Cliffs, New Jersey, 1972.

Pople, H. E., "The Formation of. Composite Hypotheses in Diagnostic Problem
Solving: An Exercise in Hypothetical Reasorlidg," Proc. 5th Int. Joint Conf.
Artificial Intelligence, Cambridge, Massachusetts, 1977, pp. 1030-1037.

Pople, H.-E., J. D. Myers, and R. A. Miller, "The DIALOG Model of Diagnostic Logic
and its Use in Internal Medicine," Proc. 4th Int. Joint Conf. Artificial Intelli-
gence, Tbilis, USSR, 1975, pp. 848-855.

Samuel, A. L., "Some Studies of Machine Learning Using the Game of Checkers,"
in E. A. Feigenbaum and J. Feldman (eds.), Computers and Thought, McGraw-
Hill Book Company, New York, 1963,pp. 71-105.

Shortliffe,- E. H., ComPuter-Based Medical Consultations: MYCIN, , American
Elsevier, New York, 1976.

Soloway, E. M., and E. M. Riseman, "Knowledge-Directed Learning," Proc. Work-
shop Pattern-Directed Inference Systems, SIGART Newsletter, Vol. 63, 1977,
pp. 49-55.

www.manaraa.com

c;6 32

Stefik, M., "An Examination of a Frame-Structured Representation System," Proc.
6th Int. Joint Conf. Artificial Intelligence, Tokyo, 1979, pp. 845-852.

Sussman, G. J., A Computational Model of Skill Acquisition, American Elsevier,
New York, 1975.

Sussman; G. J., and R. Stallman, "Heuristic Techniques in Computer Aided Circuit
Analysis," Memo 328, Massachusetts Institute of Technology, Artificial Iitelli-
gence Laboratory, Cambridge, Massachusetts, 1975.

Vere, S. A., "Inductive Learning of Relational Production ," in D. A, Waterman and -
F. Hayes-Roth (eds.), Pattern-Directed Inference Systems, Academic Press,
New York 1978a, pp. 281-295.

Vere, S. A., "Multilevel Counterfactw,,,i for Generalizations of Relational Concepts
and Productions," Techpical Report, University of Illinois; Chicago Circle,
1978b.

Waterman, D. A., Rule- Directed Interactive Transaction Agents: An Approach to
Knowledge Acquisition, The Rand Corporation, R-2171-ARPA, February
1978a.

Waterman, D. A., "Exemplary Programming in RITA," in D. A. Waterman and F.
Hayes-Roth (eds.), Pattern-Directed Inference Systems, Academic Press, New
York, 1978b, pp. 261-279.

Waterman, D. A., and F. Hayes-Roth (eds.), Pattern-Directed Inference Systenis,
Academic Press, New York, 1978.

Waterman, D. A., R. H. Anderson,: F. Hayes-Roth, P. Klahr, G. Martins, and S. J.
Rosenschein, Design of a Rule-Oriented System for Implementing Expertise,
The Rand Corporation, N-1158-1-ARPA, May 1979.

Winston, P. H., "Learning Structural Descriptions from Examples," in P. H. Win-
ston (ed.), The Psychology of Computer Vision, McGraw-Hill Book. Company,
New York, 1975.

